
Formal Verification for
Ethereum
Amsterdam, 3 May 2017  

Yoichi Hirai

“formal” verification?

http://www.telegraph.co.uk/culture/tvandradio/10803323/Why-cant-we-make-drama-like-The-Pallisers-anymore.html

“formal” comes from
formalised math

Usual Math

Formalised Math

https://en.wikipedia.org/wiki/Emmy_Noether#/media/File:Noether.jpg

idea
correct but

boring

no idea
just

looking at
“form”

correct

formal proofs on twitter

Use proof checkers  
against lots of cases

• Kepler’s conjecture  

• one needs to see all other ways are less efficient

• This involves checking lots of corner cases. 
Flyspeck project (led by Thomas Hales) used 
Isabelle and HOL-light

• (That sounds useful for software development too.)

is the most compact”“

Proving software correct
• using interactive proof assistants

Coq HOL

• they use only ~20 inference rules to derive the whole math

• … and that code matches specification

Steps for Proving Ethereum
contracts correct

• Ethereum Virtual Machine for theorem provers

• Test the EVM in the provers against other
implementations

• Use the EVM for proving byte code correct against
specifications

Proving smart contracts
correct!

The proof finishes somehow

https://github.com/pirapira/eth-isabelle

https://github.com/pirapira/eth-isabelle

Did you prove the right thing?
• The account should not do anything wrong.  
 
The balance should not decrease unless an
authorised account tells so.

Did you prove the right thing?
• The account should not do anything wrong.  
 
The balance should not decrease unless an
authorised account tells so.  
 
A non-authorised account cannot authorise any
account.

It’s not just about one
Ethereum contract…  

Verifying Ethereum as a Whole

• Theorem (Sami Mäkelä): 
No Ethereum transaction can increase the total
amount of Ether.

• Q. How can the total amount of Ether decrease?

Casper

What is Casper
• Ethereum’s coming consensus mechanism.

• Several different Casper protocols 
https://github.com/ethereum/research/tree/master/casper 
https://github.com/ethereum/research/tree/master/
casper3 
https://github.com/ethereum/research/tree/master/
casper4 
Vlad’s Casper 
Meredith’s Casper(s)

• Not easy to comprehend everything

https://github.com/ethereum/research/tree/master/casper
https://github.com/ethereum/research/tree/master/casper3
https://github.com/ethereum/research/tree/master/casper3
https://github.com/ethereum/research/tree/master/casper4
https://github.com/ethereum/research/tree/master/casper4

Consensus
• The whole thing is for avoiding forks  

(or double-spends)

• PBFT (practical byzantine fault tolerance) has  
“2/3 honest implies no fork”

• To make it cryptoeconomic, we need:  
“If a fork happens,1/3 of the deposits can be
forfeited”

Proof-of-stake requires
blaming bad behaviours

• “If 2/3 are honest, everything stays good” is not
enough

• “if something goes bad, some participants can be
penalised” is better

• Alice: “I sent it”  
Bob: “I didn’t receive it”

• Blaming a single party is much better.

Slashing conditions
• if a fork happens, some 1/3 should be blamed for

violating slashing conditions  
(signing contradicting “commit” messages /  
 signing “commit” messages without evidence / 
 signing “prepare” messages without evidence / 
 signing “commit” message between two “prepare”)

• many modes of failures because everyone can do
whatever

• theorem prover to check all failure modes

Whenever there is a fork, 
some slashing condition is violated

but the pictures help only as much.

theorem
validator-sets-finite s =)
v � 0 =)
fork-with-commits s (h, v) (h1 , v1) (h2 , v2) =)
9 h 0 v 0.
ancestor-descendant-with-chosen-validators s (h, v) (h 0, v 0) ^
one-third-of-fwd-or-rear-slashed s h 0

hproof i

end

36

lemma follow-back-history :
validator-sets-finite s =)
committed-by-both s h v =)
committed-by-both s h1 v1 =)
0 v =)
ancestor-descendant-with-chosen-validators s (h, v) (h1 , v1) =)
heir s (h, v) (h1 , v1) _
(9 h 0 v 0.
ancestor-descendant-with-chosen-validators s (h, v) (h 0, v 0) ^
one-third-of-fwd-or-rear-slashed s h 0)

hproof i

lemma fork-contains-legitimacy-fork :
validator-sets-finite s =)
0 v =)
fork-with-commits s (h, v) (h1 , v1) (h2 , v2) =)
legitimacy-fork-with-commits s (h, v) (h1 , v1) (h2 , v2) _
(9 h 0 v 0.
ancestor-descendant-with-chosen-validators s (h, v) (h 0, v 0) ^
one-third-of-fwd-or-rear-slashed s h 0)

hproof i

lemma heir-means-ad-inheritance :
heir s (h, v) (h 0, v 0) =)
ancestor-descendant-with-chosen-validators s (h, v) (h 0, v 0)

hproof i

lemma accountable-safety-for-legitimacy-fork-weak :
validator-sets-finite s =)
v � 0 =)
legitimacy-fork-with-commits s (h, v) (h1 , v1) (h2 , v2) =)
9 h 0 v 0.
ancestor-descendant-with-chosen-validators s (h, v) (h 0, v 0) ^
one-third-of-fwd-slashed s h 0

hproof i

3 Accountable Safety for Any Fork with Commits
(not skippable)

Accountable safety states that, if there is a fork with commits, there is some
legitimate heir of the validator sets of the root, of which 2/3 are slashed.

lemma accountable-safety :

35

Links
• @pirapira on Twitter

• pirapira on GitHub

• github.com/pirapira/eth-isabelle 
Smart contract verification

• github.com/pirapira/pos 
Casper verification

• yoichi@ethereum.org

http://github.com/pirapira/eth-isabelle
http://github.com/pirapira/pos

