
Blockchains:  
new home for 
proven-correct 

software

Paris, 2017-2-17 
Yoichi Hirai

Lyon: 2014 January

“Have you heard of a web site 
 where you can get Bitcoin for 
 proving theorems?”

“Yeah,  
 I created the proof market.”

Proving software correct
• In Lyon, I was attending workshops about  

formal verification

• using interactive proof assistants

Coq HOL

• they use only ~20 inference rules to derive the whole math

• … and that code matches specification

Formal in  
“formal verification”

Usual Math

Formalised Math

https://en.wikipedia.org/wiki/Emmy_Noether#/media/File:Noether.jpg

idea
correct

but boring

no
idea

just looking
at “form”

correct

Use proof checkers  
against lots of cases

• Kepler’s conjecture  

• need to see all other ways are less efficient

• This involves checking lots of corner cases. 
Flyspeck project (led by Thomas Hales) used 
Isabelle and HOL-light

• (That sounds useful for software.)

is the most compact”“

Proven-correct software

• seL4: a microkernel 
ARM assembly proven to behave as Haskell-like spec  
(NICTA, Australia, 2009)

• CompCert: a C compiler  
results proven to behave the same as the C source  
(INRIA, France, 2008; Xavier Leroy)

http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

Compiler breaker could not break CompCert

“The striking thing about our CompCert
results is that the middle-end bugs we
found in all other compilers are absent.”

found bugs in every tool that it has tested
more than 50 bugs in GCC,  

more than 100 bugs in Clang

—E.W. Dijkstra

Can proofs show absence of bugs?

But, proofs can compare implementations and specifications,
for all corner cases.

No. 
A bug = “what happens”  
 - “what people think should happen”

not accessible, until people are surprised

Testing shows the presence, not the absence of bugs

It takes time to prove
software correct

• big processor manuals

CompCert took  
 100,000 lines of Coq & 6 person-years of effort

Final
Goal

Step 1

Step 2

Step 3

some small change

×

×

××

×
×

××

×

×

×

The list of all problems / Create a new problem / Recent answers / Follow @proofmarket / Discuss

Proof Market
This is a proof market for the Coq proof assistant.

The list of all problems
Create a new problem
Recent answers

News

Somebody earned 0.999 BTC for proving False (by changing the meaning of False). Well deserved.

A new bounty on False

How to get proofs done for bitcoins

Create a new problem1.
(optional) add bounty2.
wait for somebody to solve the problem on recent entries3.
pay the price in bitcoins if the solver sets a strinctly positive price4.
see the proof5.

How to get bitcoins for proving

find a problem on the list of all problems1.
(optional) contact possible payers2.
solve the problem3.
post your solution with an additional price and your bitcoin address4.
get the bounty5.
wait for further payments (your proof still remains secret until the price is paid to you)6.

FAQ

When I submit my solution, the site says Fail.
Have you changed Admitted into Qed? Have you specified a correct bitcoin address? Have you
checked the box about the license if you agree? Doesn't your solution contain some banned
keywords such as "Extract" "ML" "Path" "State" "external" "Load" "Declare"?

Is this site written in Coq?
No, in Haskell, an inconsistent type theory. Although every type is inhabited, but not all terms
can be typed.

I want to ask a question about a problem whose author is unknown.
We discourage posting to mailing lists as a default address for an anonymous author. Try
posting a revised problem.

What version of Coq is running?
The Coq Proof Assistant, version 8.4pl2 (December 2013), ssreflect 1.5rc1 and MathComp

Proof Market https://web.archive.org/web/20140110015851/https://proofmarke...

1 of 3 1/18/17, 4:33 PM

The list of all problems / Create a new problem / Recent answers / Follow @proofmarket / Discuss

Proof Market
This is a proof market for the Coq proof assistant.

The list of all problems
Create a new problem
Recent answers

News

Somebody earned 0.999 BTC for proving False (by changing the meaning of False). Well deserved.

A new bounty on False

How to get proofs done for bitcoins

Create a new problem1.
(optional) add bounty2.
wait for somebody to solve the problem on recent entries3.
pay the price in bitcoins if the solver sets a strinctly positive price4.
see the proof5.

How to get bitcoins for proving

find a problem on the list of all problems1.
(optional) contact possible payers2.
solve the problem3.
post your solution with an additional price and your bitcoin address4.
get the bounty5.
wait for further payments (your proof still remains secret until the price is paid to you)6.

FAQ

When I submit my solution, the site says Fail.
Have you changed Admitted into Qed? Have you specified a correct bitcoin address? Have you
checked the box about the license if you agree? Doesn't your solution contain some banned
keywords such as "Extract" "ML" "Path" "State" "external" "Load" "Declare"?

Is this site written in Coq?
No, in Haskell, an inconsistent type theory. Although every type is inhabited, but not all terms
can be typed.

I want to ask a question about a problem whose author is unknown.
We discourage posting to mailing lists as a default address for an anonymous author. Try
posting a revised problem.

What version of Coq is running?
The Coq Proof Assistant, version 8.4pl2 (December 2013), ssreflect 1.5rc1 and MathComp

Proof Market https://web.archive.org/web/20140110015851/https://proofmarke...

1 of 3 1/18/17, 4:33 PM

Let people and
machine compete for
bitcoins

2014

That’s why proof market

Prove everything correct! 
But then what would happen?

A cat can break  
proven-correct software

https://pixabay.com/en/cat-computer-cable-playing-animal-70736/

https://openclipart.org/detail/132427/penguin-admin

Ethereum against  
illogical failures

• cats-resistant

• radiation
resistant

• bad admin
resistant

No single cat can break a
proven-correct smart contract?

https://static.pexels.com/photos/54632/cat-animal-eyes-grey-54632.jpeg

• I doubt it.
• But Ethereum seems an optimal deployment target

for proven-correct software.

 "triple {OutOfGas}
 (⟨ h ≤ 1023⟩ **
 stack_height (h + 2) **
 stack (h + 1) v **
 stack h w **
 program_counter k **
 gas_pred g **
 continuing
)

 {(k, Arith ADD)}

 (stack_height (h + 1) **
 stack h (v + w) **
 program_counter (k + 1) **
 gas_pred (g - Gverylow) **
 continuing
)"

{
{

A simple
theorem:  

ADD does 
addition

pre-condition

post-condition

Can that scale?
• Yes, but slowly

• Verified bytecode snippets can be composed

• It takes 5 minutes of manual work to combine two
bytecode snippets

• ~ 10 instructions / hour

• more speed requires some months of tooling

• much faster than testing all possible inputs

Does this match the actual
Ethereum Virtual Machine?

• Yes, as far as the VM test suite can tell.  
(with small prints)

EVM definition in Lem

EVM in OCaml EVM definiton in Isabelle

extract

VM test suite passes

ext
rac

t

used for proving✓
Works the same as Ethereum Virtual Machine in C++ etc.

• No. 
See pull-
requests

• If you can
review
LaTeX, 
that’s great
help! 
 
Changes
coming.

Does this match  
the Yellow Paper?

Small Community

• EVM definition available for Isabelle/HOL and
HOL4 (Coq is coming, thanks to somebody.)

• received some external contributions

• some researchers started projects

Proof IDE

input commands

current goal shown

you can jump  
to definitions etc.

So far: EVM definitions ready
• bytecode is

executable in
theorem provers 
& in OCaml

• balance increase
at any moment

• reentrancy

• code removal
after self-destruct

• For a 500 instruction
byte code, proved
balance does not
decrease under
some conditions

• bytecode
execution on a
single contract
passes VM test

Nov. 2016

Jan. 2017Nov. 2016

Oct. 2016

Plan: reusable verified
snippets

• every instruction

• if-then-else

• while loop

• string manipulation

• math functions

• datetime

• ABI

• proven-
correct 
libraries

• Hire an Isabelle-
HOL user and
develop proven-
correct smart
contracts!• reentrancy

March, 2017
June, 2017

May, 2017

July, 2017 July, 2017

Don’t trust it

• because, just see what happened to  
the proof market

(obsolete) bug bounty program:  
prove falsehood and get a bitcoin

Theorem f : False.
Proof.
 (* fill in and change Admitted into Qed *)
Admitted.

I put 0.999 BTC as bounty.

2014

The list of all problems / Create a new problem / Recent answers / Follow @proofmarket / Discuss

Proof Market
This is a proof market for the Coq proof assistant.

The list of all problems
Create a new problem
Recent answers

News

Somebody earned 0.999 BTC for proving False (by changing the meaning of False). Well deserved.

A new bounty on False

How to get proofs done for bitcoins

Create a new problem1.
(optional) add bounty2.
wait for somebody to solve the problem on recent entries3.
pay the price in bitcoins if the solver sets a strinctly positive price4.
see the proof5.

How to get bitcoins for proving

find a problem on the list of all problems1.
(optional) contact possible payers2.
solve the problem3.
post your solution with an additional price and your bitcoin address4.
get the bounty5.
wait for further payments (your proof still remains secret until the price is paid to you)6.

FAQ

When I submit my solution, the site says Fail.
Have you changed Admitted into Qed? Have you specified a correct bitcoin address? Have you
checked the box about the license if you agree? Doesn't your solution contain some banned
keywords such as "Extract" "ML" "Path" "State" "external" "Load" "Declare"?

Is this site written in Coq?
No, in Haskell, an inconsistent type theory. Although every type is inhabited, but not all terms
can be typed.

I want to ask a question about a problem whose author is unknown.
We discourage posting to mailing lists as a default address for an anonymous author. Try
posting a revised problem.

What version of Coq is running?
The Coq Proof Assistant, version 8.4pl2 (December 2013), ssreflect 1.5rc1 and MathComp

Proof Market https://web.archive.org/web/20140110015851/https://proofmarke...

1 of 3 1/18/17, 4:33 PM

2014

The proof of False  
that I bought with 1 BTC

The list of all problems / Create a new problem / Recent answers / Follow @proofmarket / Discuss

An answer to False
by 1A8a55WuT2oCCUsHitZzHPdZmTENjyR7cy
at 2014-01-03 21:37:47.045297 UTC
price 0 satoshi
bounty 99900000 satoshi

Inductive False := I.

Theorem inhabitant : False.
Proof.
exact I.
Qed.

The content of this web page is licensed under a Creative Commons Attribution 4.0 International
License.

Proof Market - An answer https://web.archive.org/web/20140110015902/https://proofmarke...

1 of 1 1/19/17, 1:58 PM

2014

From: x@y.fr 
 
Hi there,

this is just a quick mail to state that I was the guy who made the
exploit of the False proof on ProofMarket.
…
I have not lost the hope to prove that Coq is inconsistent though...

Cheers,

Indeed, anything was provable in Coq. 
I closed the site.

2014

I trust bounties more than proof checkers.

mailto:x@y.fr

Another bounty  
(what could go wrong)

• I proved a wallet correct (to a spec). I put 1,000 ETH at  
0x0fcc015903e7e51a947ed7276a21d37a11b29e61

• Please try to take the fund

• The first one is as simple as “prove False”

• A blog post is scheduled 1pm today on medium.

• (From here, I’ll set up more and more complicated
proven-correct Ethereum contracts.)

https://github.com/pirapira/eth-isabelle/blob/a0865523bf891e6efe292382fe09d44dc8b8eb4f/example/SimpleWallet.thy#L1420

Projects waiting for you
• Resource Consumption by Gas  

There is a proof on github:  
 “With G gas, only G steps are possible”. 
of (CALL, EXTCODE, BALANCE, SSTOREs)

• CompCert-style proven-correct compiler into EVM

• Proven-correct transpiler from EVM to eWASM

• Extending Oyente: 
an automatic vulnerability checker (supporting all instructions)

• CSmith-style Solidity compiler fuzzing

@pirapira (twitter, GitHub)

https://github.com/mrsmkl/eth-isabelle/blob/5a425299fd65674f5737a483a26a03499b6010f4/example/ConstantGas.thy#L985

blockchains theorem
proving

strong internal consistency

limited external interface

by small number  
of trusted rules 
& 
contradiction explodes

by deterministic rules &  
cryptographic hashes &  

cooperative games

because distributed nodes
see the world differently

because it can only talk
about mathematics
defined within

lemma whole_program_invalid_caller:
"triple {OutOfGas} (⟨unat bn ≥ 2463000 ∧ ucast c ≠ w⟩ **
 block_number_pred bn **
 stack_height 0 **
 program_counter 0 ** caller c **
 storage (word_rcat [0]) w **
 gas_pred g **
 continuing
)
 whole_concrete_program
 (block_number_pred bn **
 stack_height 0 **
 program_counter 8 ** caller c **
 storage (word_rcat [0]) w **
 gas_pred
 (g + (- Gsload (unat bn) - 2)
 - 2 * Gverylow - Gverylow - Ghigh) **
 not_continuing ** action (ContractReturn []))"

lemma check_pass_whole_concrete:
 "triple {OutOfGas} (⟨unat bn ≥ 2463000 ⟩ **
 block_number_pred bn **
 stack_height 0 **
 program_counter 0 ** caller c **
 storage (word_rcat [0]) (ucast c) **
 gas_pred g **
 continuing **
 this_account t **
 balance t b **
 memory_usage 0
)
 whole_concrete_program
 (memory_usage 0 **
 stack_topmost 0 [] **
 program_counter 22 **
 this_account t **
 balance t 0 **
 gas_any **
 not_continuing **
 action (ContractCall ⦇
 callarg_gas = word_rcat [(8 :: byte), 0]
 , callarg_code = c
 , callarg_recipient = c
 , callarg_value = b
 , callarg_data = []
 , callarg_output_begin = word_rcat [0]
 , callarg_output_size = word_rcat [0] ⦈) **
 block_number_pred bn **
 caller c **
 storage (word_rcat [0]) (ucast c)
)"

