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Abstract. We propose a typed lambda calculus based on Avron’s hy-
persequent calculus for Gödel–Dummett logic. This calculus turns out
to model waitfree computation. Besides strong normalization and non-
abortfullness, we give soundness and completeness of the calculus against
the typed version of waitfree protocols. The calculus is not only proof
theoretically interesting, but also valuable as a basis for distributed pro-
gramming languages.

1 Introduction

The Curry–Howard isomorphism [20] is surprising because the same method
works for two different purposes: a logical purpose of removing redundancy
from proofs and a computational purpose of finding a class of terminating
programs. We extend this surprise to Gödel–Dummett logic and waitfreedom.
Gödel–Dummett logic [9] is one of the intermediate logics between classical and
intuitionistic logics. Waitfreedom [14, 19] is a class of distributed computation
without synchronization among processes.

We connect Gödel–Dummett logic and waitfreedom using Avron’s hyperse-
quent calculus [2]. We respond to his suggestion:

it seems to us extremely important to determine the exact computational
content of them [intermediate logics] — and to develop corresponding ‘λ-
calculi’ —Avron [2].

Differently from intuitionistic logic, Gödel–Dummett logic validates all formulae
of the form (φ ⊃ ψ) ∨ (ψ ⊃ φ). Our aim is building a typed lambda calculus
with some terms witnessing those formulae. Such a term M : (φ ⊃ ψ) ∨ (ψ ⊃ φ)
must choose M ⇝∗ inl (· · ·) or M ⇝∗ inr (· · ·). We devise a nondeterministic
λ-calculus in Sect. 2.

Waitfreedom is a class of distributed computation where processes cannot
wait for other processes. When two processes try to exchange information, the
faster process can pass information to the slower one, but not always vice versa
because the slower process might start after the faster one finishes. So, the
computation is nondeterministic. The contribution of this paper is capturing
this nondeterminism using the nondeterministic λ-calculus for Gödel–Dummett
logic: in Sect. 4, we show that the λ-terms in the calculus can solve a typed
input-output problems if and only if it is waitfreely solvable.



2 λ-GD

We first present a proof system for Gödel–Dummet logic. Then we turn the proof
system into typing rules for λ-terms of λ-GD, give a set of reductions and prove
strong-normalization and non-abortfullness.

2.1 Logic

Let us assume a countably infinite set of propositional variables. We define local
formulae φ,ψ by the following BNF, where I is a propositional variable1:

φ,ψ ::= ⊥ | I | (φ ⊃ ψ) | (φ ∧ ψ) | (φ ∨ ψ) .

Further, we define global formulae φ+, ψ+ with the following BNF:

φ+, ψ+ ::= [i]φ | (φ+ ∧ ψ+) | (φ+ ∨ ψ+)

where i is a natural number (representing a process). The unary operators
[0], [1], . . . are called modalities. We omit parentheses following the usual con-
vention. Informally, the local formulae describe datatypes used by each process.
The global formulae describe inputs or outputs of all processes together.

A context (denoted by Γ and ∆ possibly subscripted) is a potentially empty
finite sequence of global formulae. A sequent Γ ⊢ φ+ is a pair of a context and
a global formula. A hypersequent is a finite sequence of sequents.

The underlying logic has the derivation rules in Fig. 1. If we omit all the
modalities, these rules characterize Gödel–Dummett logic. However, the modal-
ities have at least some sense: while ([0]φ ⊃ [0]ψ) ∨ ([1]ψ ⊃ [1]φ) is provable,
([0]φ ⊃ [1]ψ) ∨ ([0]ψ ⊃ [1]φ) is not. A semantics will be given in Sect. 4.

2.2 Term Assignment

We assume distinct, countably infinite sets of variables, locations and processes.
Locations are denoted by l; process i, j, . . . and variables x, y, . . .. Later, locations
will be used to specify a pair of stores holding terms. Like in the λ-calculus, some
terms reduces to other terms, but in this calculus, terms may interact with the
store (like a program written in Haskell or OCaml does with an i-var). This
behavior will be shown later in the definition of reductions.

We define terms T by the BNF where Γ is a sequence of variables:

T ::=x |
−→
liΓ (T ) |

←−
liΓ (T ) | ⟨T , T ⟩g | πg

l (T ) | π
g
r (T ) | inl

g (T ) | inrg (T ) |
matchg T of inlg (x) .T /inrg (y) .T | [T , T ] | abort | πl (T ) | πr (T ) | ⟨T , T ⟩ |
inl (T ) | inr (T ) | λx.T | (T T ) | match T of inl (x) .T /inr (y) .T .

1 We include ⊥ because Gödel–Dummett logic has it although ⊥ is not necessary for
us to encode waitfree computation.



External Rules

H Γ,∆ ⊢ [i]φ H Γ,∆ ⊢ [j]ψ
com’

H Γ ⊢ [i]ψ ∆ ⊢ [j]φ

H+

EW
H+ Γ ⊢ φ+

H Γ ⊢ φ+ Γ ⊢ φ+

EC
H Γ ⊢ φ+

H Γ ⊢ φ+ ∆ ⊢ ψ+ H′

EE
H ∆ ⊢ ψ+ Γ ⊢ φ+ H′

Inner Global Rules

H Γ, φ+, ψ+,∆ ⊢ θ+
IE
H Γ, ψ+, φ+,∆ ⊢ θ+

H Γ ⊢ φ+

IW
H ψ+, Γ ⊢ φ+

H ψ+, ψ+, Γ ⊢ φ+

IC
H ψ+, Γ ⊢ φ+

H Γ ⊢ φ+ H Γ ⊢ ψ+

∧I
H Γ ⊢ φ+ ∧ ψ+

H Γ ⊢ φ+ ∧ ψ+

∧E0
H Γ ⊢ φ+

H Γ ⊢ φ+ ∧ ψ+

∧E1
H Γ ⊢ ψ+

H Γ ⊢ φ+

∨I0
H Γ ⊢ φ+ ∨ ψ+

H Γ ⊢ ψ+

∨I1
H Γ ⊢ φ+ ∨ ψ+

H Γ ⊢ φ+ ∨ ψ+ H φ+, Γ ⊢ θ+ H ψ+, Γ ⊢ θ+
∨E

H Γ ⊢ θ+

Inner Local Rules

[i]Ax
[i]φ, Γ ⊢ [i]φ

H Γ ⊢ [i]⊥
[i]⊥E

H Γ ⊢ [i]φ

H [i]φ, Γ ⊢ [i]ψ
[i] ⊃ I

H Γ ⊢ [i](φ ⊃ ψ)
H Γ ⊢ [i](φ ⊃ ψ) H Γ ⊢ [i]φ

[i] ⊃ E
H Γ ⊢ [i]ψ

H Γ ⊢ [i]φ H Γ ⊢ [i]ψ
[i] ∧ I

H Γ ⊢ [i](φ ∧ ψ)

H Γ ⊢ [i](φ ∧ ψ)
[i] ∧ E0

H Γ ⊢ [i]φ

H Γ ⊢ [i](φ ∧ ψ)
[i] ∧ E1

H Γ ⊢ [i]ψ

H Γ ⊢ [i]φ
[i] ∨ I0

H Γ ⊢ [i](φ ∨ ψ)
H Γ ⊢ [i]ψ

[i] ∨ I1
H Γ ⊢ [i](φ ∨ ψ)

H Γ ⊢ [i](φ ∨ ψ) H [i]φ, Γ ⊢ [i]θ H [i]ψ, Γ ⊢ [i]θ
[i] ∨ E

H Γ ⊢ [i]θ

Fig. 1. The underlying logic. Metavariables i and j stand for a process. H stands for
a hypersequent. H+ stands for a nonempty hypersequent. Γ and ∆ stand for possibly
empty contexts. The most important com’ rule is based on a rule by Avron [3].



All variable occurrences (including those in Γ ) except the first clause are binding.
The constructs with a g represent the global rules and the constructs without
a g represent the local rules.

We extend a sequent to Γ ▷M : φ+, where Γ is a sequence like x : ψ+, y : θ+

and M is a term. In a sequent Γ ▷M : φ+, we require the variables in Γ to be
distinct from each other. A contexted type Γ ▷ φ+ is a sequent without a term
but with variables in Γ . A hypersequent is a finite sequence of sequents (called
components) where the same variable has the same type even if it appears in
different components. The typing rules for the terms are given in Fig. 2.

2.3 Reduction

A termM is of type φ+ iff there is a derivation of Γ ▷M : φ+. A local term is a

term without
←−
l ,
−→
l or any g constructs. A hyperterm O is a nonempty sequence

of terms. A store maps a location to a local term or ϵ. For a store σ, the updated
store σ[l 7→ x] maps l to x and l′ to σ(l′) if l′ is different from l. A configuration
is a triple (σ, τ ,O) of two stores σ, τ and a hyperterm O.

To complete the definition of λ-GD, we define the reductions ⇝♣ of config-
urations for ♣ ∈ {B,W,R,A,P}. We consider terms up to α-equivalence and
implicitly require all instances of ⇝♣ to avoid free variable captures. Below, □
and ■ match g or nothing.

Definition 1 (Basic Reduction). The basic reduction⇝B is the smallest con-
gruence containing the followings:

– (σ, τ , (λx.M)O)⇝B (σ, τ ,M [O/x])
– (σ, τ , π□

l

(
⟨M,N⟩□

)
)⇝B (σ, τ ,M)

– (σ, τ , π□
r

(
⟨M,N⟩□

)
)⇝B (σ, τ ,N)

– (σ, τ ,match□ inl□ (M) of inl□ (x) .N/inr□ (y) .O)⇝B (σ, τ ,N [M/x])

– (σ, τ ,match□ inr□ (M) of inl□ (x) .N/inr□ (y) .O)⇝B (σ, τ ,O[M/y])

There are two sorts of reductions that interact with the store. In summary,←−
liΓ (N) tries to write to the right store and read from the left store of the con-
figuration. If a term tries to read from an empty location of a store, the term
changes into abort . If a term writes to a full location of a store, it does not abort
but the store is not updated. The formal definition follows.

Definition 2 (Write Reduction). The write reduction ⇝W is the smallest
congruence containing the followings where M is a local term:

– (σ, τ [l 7→ ϵ],
←−
liΓ (M))⇝W (σ, τ [l 7→M ],

←−
liΓ (M)) ,

– (σ[l 7→ ϵ], τ ,
−→
lj∆ (M))⇝W (σ[l 7→M ], τ ,

−→
lj∆ (M)) .

Definition 3 (Read Reduction). The read reduction ⇝R is the smallest con-
gruence containing the followings:

– (σ[l 7→ N ], τ [l 7→M ′],
←−
liΓ (M))⇝R (σ[l 7→ N ], τ [l 7→M ′], N)



External Rules

O0 Γ,∆ ▷M : [i]φ O1 Γ,∆ ▷ N : [j]ψ

[O0,O1] Γ ▷
−→
li∆ (M) : [i]ψ ∆ ▷

←−
ljΓ (N) : [j]φ

O+

O+ Γ ▷ abort : φ+

O Γ ▷M : φ+ Γ ▷ N : φ+

O Γ ▷ [M,N ] : φ+

O Γ ▷M : φ+ ∆ ▷ N : ψ+ O′

O ∆ ▷ N : ψ+ Γ ▷M : φ+ O′

Inner Global Rules

O Γ ▷M : φ+

O x : ψ+, Γ ▷M : φ+

O x : φ+, y : φ+, Γ ▷M : ψ+

O x : φ+, Γ ▷M [x/y] : ψ+

O Γ, x : φ+, y : ψ+,∆ ▷M : θ+

O Γ, y : ψ+, x : φ+,∆ ▷M : θ+
O0 Γ ▷M : φ+ O1 Γ ▷ N : ψ+

[O0,O1] Γ ▷ ⟨M,N⟩g : φ+ ∧ ψ+

O Γ ▷M : φ+ ∧ ψ+

O Γ ▷ πg
l (M) : φ+

O Γ ▷M : φ+ ∧ ψ+

O Γ ▷ πg
r (M) : ψ+

O Γ ▷M : φ+

O Γ ▷ inlg (M) : φ+ ∨ ψ+

O Γ ▷M : ψ+

O Γ ▷ inrg (M) : φ+ ∨ ψ+

O0 Γ ▷M : φ+ ∨ ψ+ O1 x : φ+, Γ ▷ N0 : θ
+ O2 y : ψ+, Γ ▷ N1 : θ

+

[[O0,O1],O2] Γ ▷ matchgM of inlg (x) .N0/inr
g (y) .N1 : θ

+

Inner Local Rules

x : [i]φ, Γ ▷ x : [i]φ
O Γ ▷M : [i]⊥
O Γ ▷ abort : [i]φ

O x : [i]φ, Γ ▷M : [i]ψ

O Γ ▷ λx.M : [i](φ ⊃ ψ)
O0 Γ ▷M : [i](φ ⊃ ψ) O1 Γ ▷ N : [i]φ

[O0,O1] Γ ▷MN : [i]ψ

O0 Γ ▷M : [i]φ O1 Γ ▷ N : [i]ψ

[O0,O1] Γ ▷ ⟨M,N⟩ : [i](φ ∧ ψ)

O Γ ▷M : [i](φ ∧ ψ)
O Γ ▷ πl (M) : [i]φ

O Γ ▷M : [i](φ ∧ ψ)
O Γ ▷ πr (M) : [i]ψ

O Γ ▷M : [i]φ

O Γ ▷ inl (M) : [i](φ ∨ ψ)
O Γ ▷M : [i]ψ

O Γ ▷ inr (M) : [i](φ ∨ ψ)

O0 Γ ▷M : [i](φ ∨ ψ) O1 x : [i]φ, Γ ▷ N0 : [i]θ O2 y : [i]ψ, Γ ▷ N1 : [i]θ

[[O0,O1],O2] Γ ▷ matchM of inl (x) .N0/inr (y) .N1 : [i]θ

Fig. 2. Term assignment. O stands for a possibly empty hypersequent (with possible
subscripts). O+ stands for a non-empty hypersequent. Within each rule, O0, O1 and
O2 have the same length and the same type so that [O0,O1] can be defined as the
elementwise application of [T , T ].



– (σ[l 7→ ϵ], τ [l 7→M ′],
←−
liΓ (M))⇝R (σ[l 7→ ϵ], τ [l 7→M ′], abort )

– (σ[l 7→M ′], τ [l 7→ N ],
−→
li∆ (M))⇝R (σ[l 7→M ′], τ [l 7→ N ], N)

– (σ[l 7→M ′], τ [l 7→ ϵ],
−→
li∆ (M))⇝R (σ[l 7→M ′], τ [l 7→ ϵ], abort ) .

Definition 4 (Abort Propagation Reduction). The abort propagation re-
duction ⇝A is the smallest congruence containing the followings:

– (σ, τ , [abort ,M ])⇝A (σ, τ ,M), and (σ, τ , [M, abort ])⇝A (σ, τ ,M)
– (σ, τ , C[abort ])⇝A (σ, τ , abort )

where C[•] is •N , M•,
−→
li∆ (•),

←−
liΓ (•), inl□ (•), inr□ (•), ⟨•, N⟩□, ⟨M, •⟩□, π□

i •.
match□M of inl□ (x) .N/inr□ (y) .•, match□ • of inl□ (x) .N/inr□ (y) .O, or

match□M of inl□ (x) .•/inr□ (y) .O

In order to obtain subformula property via proof normalization we add yet an-
other kind of reduction rules.

Definition 5 (Permutative Reduction). The permutative reduction ⇝P is
the smallest congruence containing the followings:

– (σ, τ ,
(
match□M of inl□ (x) .N/inr□ (y) .O

)
P )⇝P

(σ, τ ,match□M of inl□ (x) .NP/inr□ (y) .OP )

– (σ, τ , π□
d

(
match■M of inl■ (x) .N/inr■ (y) .O

)
)⇝P

(σ, τ ,match■M of inl■ (x) .π□
d N/inr

■ (y) .π□
d O)

– (σ, τ ,match□
(
match■M of inl■ (x) .N/inr■ (y) .O

)
of inl□ (u) .P/inr□ (v) .Q)⇝P

(σ, τ,match■M of inl■ (x) .
(
match□N of inl□ (u) .P/inr□ (v) .Q

)
/

inr■ (y) .
(
match□O of inl□ (u) .P/inr□ (v) .Q

)
)

– (σ, τ , [M,N ]P )⇝P (σ, τ , [MP,NP ])

– (σ, τ , π□
d [M,N ])⇝P (σ, τ , [π□

d M,π□
d N ])

– (σ, τ ,match□ [M,N ] of inl□ (x) .P/inr□ (y) .Q)⇝P

(σ, τ , [match□M of inl□ (x) .P/inr□ (y) .Q,match□N of inl□ (x) .P/inr□ (y) .Q])

We define ⇝ to be the union of ⇝B, ⇝W, ⇝R, ⇝A and ⇝P. The reflexive
transitive closure of⇝ is written as⇝∗. A redex is a subterm that can be rewrit-
ten by a reduction. A configuration C is normal when there is no configuration
D with C ⇝ D. A term M is normal when the configuration (σ, τ ,M) is normal
(the choice of σ and τ is irrelevant).

2.4 Properties

An important property of λ-GDis strong normalization: every typed hyperterm
has a maximal number of reductions it can take. Another is non-abortfullness:
although some reductions yield abort terms, a typed hyperterm never reduces to
a hyperterm that only contains abort ’s. We show this first for its simpler proof.



Theorem 1 (Non-abortfullness). All normal forms of a typed configuration
contain at least one term that is not abort .

Proof. When a reduction sequence is fixed, for any location l, depending on

whether the right or the left store is filled first, either: (i) no
−→
li∆ (M) ⇝ abort

occurs for any i, or (ii) no
←−
liΓ (M)⇝ abort occurs for any i.

If the former is the case, we can rewrite a communication rule occurrence

O0 Γ,∆ ▷M : [i]ψ O1 Γ,∆ ▷ N : [j]τ

[O0,O1] Γ ▷
−→
li∆ (M) : [i]τ ∆ ▷

←−
liΓ (N) : [j]ψ

into successive external weakening occurrences

O0 Γ j ,∆j ▷M : [j]ψ

O0 ▷ abort : [i]τ Γ j , ∆j ▷M : [j]ψ

where Γ j and ∆j can be obtained from the originals by changing every modal-
ity [k] to [j]. In the lattar case, we can do the symmetric.

After these rewritings for all appearing locations, we obtain a derivation not

containing
−→
l or

←−
l . Moreover, the end hypersequent of the resulting derivation

has a component not containing abort . The reductions of the original hyperterm
can be simulated by the resulting hyperterm. And, even after reductions, the
resulting hyperterm has a component not containing abort .

Theorem 2 (Strong Normalization). λ-GD is strongly normalizing.

Proof. For proving this, we consider the local fragment that does not contain
−→
li∆ (M),

←−
ljΓ (N) or any construct with g. We first reduce the strong normalization

of the λ-GD to that of the local fragment, and ultimately to that of de Groote’s
natural deduction with permutation-conversion [13]2.

We assume an infinite sequence of reductions (σ0, τ0,O0) ⇝ (σ1, τ1,O1) ⇝
(σ2, τ2,O2) ⇝ · · · . From this, we are going to construct an infinite sequence of
reductions in the local fragment.

For that, we first build an infinite reduction sequence with constant stores.
Using the original infinite sequence, we define a pair of stores called the store
prophecy (σ∞, τ∞) where σ∞(l) = ϵ if σk(l) = ϵ for all k ∈ ω and σ∞(l) = M
if σk(l) = M for some k ∈ ω ; and τ∞(l) is symmetrically defined. Since store
contents are never overwritten, σ∞ and τ∞ are well-defined. Moreover, σi(l) and
σ∞(l) coincide unless σi(l) = ϵ.

We build another reduction sequence (σ∞, τ∞,O0) ⇝∗ (σ∞, τ∞,O′
1) ⇝∗

(σ∞, τ∞,O′
2) ⇝∗ · · · with the following invariant: M′

i can be obtained by re-
placing some abort occurrences in Mi with some terms. More specifically, we
translate each reduction as follows, keeping the invariant inductively on the
number of steps (the base case is satisfied byM′

0 =M0 immediately):

2 To the same effect, we might be able to use other strong normalization results for
lambda calculi with commutative conversions, like Balat, Di Cosmo and Fiore [5].



– a read reduction (σk, τk, C
[←−
li∆ (M)

]
) ⇝R (σk+1, τk+1, C [O]) is translated

into (σ∞, τ∞, C′
[←−
li∆ (M)

]
)⇝R (σk+1, τk+1, C′ [O′]). If σi(l) is a term, σ∞(l)

and O′ are also identical to the term. Otherwise, O′ must be abort . Thus,
the invariant holds for k + 1.

– a write reduction disappears;
– an abort propagation C [C[abort ]] ⇝A C [abort ] can be translated either to

a similar reduction or no reduction if the abort in the redex is replaced by
another term in theM′

k. Note that even in that case, the resultM′
k+1 can

be obtained by replacing some abort occurrences inMk+1 with other terms;
– any other reduction (σk, τk, C [M ]) ⇝B/P (σk+1, τk+1, C [N ]) is translated

into one similar reduction (σ∞, τ∞, C′ [M ′])⇝B/P (σ∞, τ∞, C′ [N ′]).

Here, we have to show that the translated sequence is infinite. For that, we can
use the facts that there are only finite number of usedlocations each of which
allows only one write, and that an abort propagation always strictly shortens
the term under operation.

After that, we can replace every
←−
liΓ (M) with τ∞(l). Since

←−
liΓ (M) either re-

duces to τ∞(l) or abort , replacing it with τ∞(l) will only “shorten” the reduction

sequence for at most one read step. We can do the same for
−→
ljΓ (N). Replacing

every such occurrences makes an infinite reduction sequence where every occur-
ring term is in the local fragment. Moreover, the result of the translation is also
well-typed. A typing derivation of the resulting hyperterm can be obtained by
replacing com’ rules with EW rules and changing the process number in types
of some variables (c.f. the proof of Thm. 1).

We are aiming at reducing the problem to the strong normalization result

by de Groote [13]. Since we have eliminated
−→
li∆ (M) or

←−
liΓ (N) occurrences, the

remaining difference is small: some abort propagation reductions and some per-
mutative reductions involving [T , T ′]. We just have to make sure that there are
no infinite reduction sequences that consist of these two kinds of reductions only.
We can deal with the permutative reductions following de Groote [13]’s strategy
for introducing ⊥. For abort propagation, we can apply the previous argument.

3 Typed Waitfreedom

Waitfreedom [14, 19] is a class of protocols that can solve some of the input-
output problems [18, 6]. We define the typed version of waitfreedom.

3.1 Typed Input-Output Problem

Saks and Zaharoglou [19] formulated waitfreedom as a class of input-output
problems. Given inputs for all processes and outputs of all processes, an input-
output problem decides whether the processes have succeeded or not. We change
the standard definition and have typed terms as inputs and outputs.



For that, we let T −(φ) denote the set of closed, local terms of type φ, and
V−(φ) denote the set of normal terms in T −(φ). For a finite set of processes P,
a typed input-output problem consists of each process’s input type (ιi)i∈P, each
process’s output type (oi)i∈P, and a task R ⊆

∏
i∈P (T −(ιi))×

∏
i∈P (V−(oi)).

3.2 Typed Protocol

We assume a finite set P of processes and a countably infinite set of program vari-
ables ProV = {x, y, z, . . .}. We assume an injection from variables to program
variables x 7→ xx, whose image leaves infinitely many unused program variables.

A program is defined by BNF:

p ::= ϵ | x← E; p | l← E; p

where an expression is

E ::= x | x | l | (EE) | λx.E | ⟨E,E⟩ | inl (E) | inr (E) |
πl (E) | πr (E) | matchE of inl (x) .E/inr (y) .E | ϵ .

A program is well-formed when a program variable (resp. location) first ap-
pears in a x ← E (resp. l ← E) sentence, and after that, only appears in
expressions. For a contexted type t = (Γ ▷ φ+), we write M : t for Γ ▷M : φ+.
For input types (ιi)i∈P and output types (oi)i∈P, a typed protocol has:

– two program variables ii and oi for each process i;
– a finite set of locations L;
– two functions g : L → P and d : L → P (specifying the left side writer and

the right side writer of each location); g(l) might read what d(l) writes and
vice versa;

– Wg,Wd: each maps a location in L to a contexted type; g(l) writes a term
of Wg(l) and d(l) writes a term of Wd(l);

– a function ti for each i ∈ P; that maps a program variable to a contexted
type (xk : φk)k ▷ [i]φ with a special condition ti(ii) = ιi;

– a typed program pi for each i ∈ P, where a typed program is a well-formed
program where all sentences are typed according to (t, g, d, i,Wg,Wd). A
sentence x ← E is typed iff E : t(x) is derivable with assumptions of the
form ▷ y : t(y), ▷ l : Wd(l) and ▷ l : Wg(l).

3.3 Typed Waitfree Computation

We define when a protocol solves a typed input-output problem. These defini-
tions are transferred from [19].

Let P be {0, . . . , n− 1} and fix a typed protocol. A program variable content
m for i ∈ P is a partial function that maps a program variable to a term of ti(x).
A term M is of a contexted type Γ ▷ φ when Γ ▷M : φ is derivable. A process
snapshot of i ∈ P is a tuple ⟨p,m⟩ where p is either a program or abort and m is
a program variable content for i. We let Si denote the set of process snapshots



for i. A system snapshot is a pair ⟨s⃗, v⃗⟩, where s⃗ = ⟨s0, s1, . . . , sn−1⟩ ∈
∏

i∈P (Si)
and v⃗ = (⟨vl,g, vl,d⟩)l∈L ∈

∏
l∈L ((V(Wg(l)) ∪ {ϵ})× (V(Wd(l)) ∪ {ϵ})).

For a nonempty subset J of P, we define an operator ◁ J that takes a system
snapshot and produces a system snapshot. This operator depicts a computation
step where the processes in J are fired.

We define (s⃗, v⃗) ◁ J = (u⃗, m⃗) by defining ui and mi where si = ⟨p, x⟩:

ui =



⟨p′, x⟩ (if p = l← E; p′ and JEKx,v⃗ ̸= ϵ)

⟨ϵ, x⟩ (if p = l← E; p′ and JEKx,v⃗ = ϵ)

⟨p′, x[x 7→ JEKx,v⃗]⟩ (if p = x← E; p′, x(x) = ϵ and JEKx,v⃗ ̸= ϵ)

⟨ϵ, x⟩ (if p = x← E; p′, x(x) = ϵ and JEKx,v⃗ = ϵ)

⟨ϵ, x⟩ (if p = x← E; p′ and x(x) ̸= ϵ)

si (if p = ϵ)

ml,g =

{JEKx,v⃗ (if p = l← E; p′, g(l) = i and vl,g = ϵ)

vl,g (otherwise)

ml,d =

{JEKx,v⃗ (if p = l← E; p′, d(l) = i and vl,d = ϵ)

vl,d (otherwise)

with the following notations. We let i(l) to be vl,g if d(l) = i and vl,d if g(l) = i.

The term JEKx,v⃗ is defined as the unique normal form of E[x(⃗y)/y⃗][ ⃗i(l)/⃗l], where
every program variable y is replaced by x(y) and the uniqueness is guaranteed

by the absence of
←−
l or

−→
l . If any of the substitutes is ϵ, JEKx,v⃗ is ϵ.

A schedule is an infinite sequence of nonempty subsets of P, which looks like
σ = σ0σ1σ2 · · · . We say i is nonfaulty in σ if it appears infinitely often. When
every process is nonfaulty, the schedule is fair.

A run is a triple ⟨Π, x⃗, σ⟩, where Π is a typed protocol, x⃗ ∈
∏

i∈P T −(ιi) is
the input, and σ is a schedule. The execution associated to the run is defined

as the infinite sequence of system snapshots C0C1C2 · · · , where C0 = ⟨s⃗0, v⃗0⟩ is
defined by s⃗0i = ⟨pi, [ii 7→ xi]⟩ and vl,g = vl,d = ϵ, and Ck+1 = Ck ◁ σi+1.

Process i’s output ôk at step k isM if the i-th process snapshot of Ck is (p, x)
and the x[oi] =M , which can be ϵ. The decision value of i on the run ⟨Π, x⃗, σ⟩,
denoted di ∈ V−(oi) ∪ {ϵ} is the first non-ϵ element in the sequence (ôk)k∈ω, or

ϵ if such element does not exist. The n-tuple d⃗ is defined by di’s.
A vector b⃗ ∈

∏
i∈P(V−(oi)) is compatible with d⃗ ∈

∏
i∈P (V−(oi) ∪ {ϵ}) iff

di = bi or di = ϵ holds for any process i. An input x⃗ ∈
∏

i∈P T −(ιi) is R-

permissible iff there is at least one vector d⃗ ∈
∏

i∈P(V−(oi)) with (x⃗, b⃗) ∈ R.
A typed protocol Π solves the typed input-output problem ⟨(ιi)i∈P, (oi)i∈P, R⟩
on schedule σ iff for all R-permissible inputs x⃗ and a schedule σ, the decision
value of every nonfaulty process i is a term M not ϵ, and there is a vector
b⃗ ∈

∏
i∈P(V−(oi)) with ⟨x⃗, b⃗⟩ ∈ R which is compatible with the decision vector d⃗.

A typed protocol is waitfree iff it solves the problem on every schedule σ. In that
case, the typed input-output problem is waitfreely solvable.



4 Characterization of Waitfreedom and λ-GD

We compare the ability of the waitfree protocols and λ-GD .

Definition 6. A typed input-output problem ⟨(ιi)i∈P, (oi)i∈P, R⟩ is solvable by a
term M of contexted type (xi : [i]ιi)i∈P ▷

(∧∧
i∈P[i]oi

)
iff for any closed (Ni)i∈P of

ιi, all normal forms ofM [N⃗i/x⃗i] are in the form ⟨V0, ⟨V1, · · · ⟨Vn−2, ⟨Vn−1, •⟩⟩ · · ·⟩⟩
where ⟨(Ni)i∈P, (Vi)i∈P⟩ ∈ R.

Theorem 3 (Soundness). If a typed input-output problem is solvable by a
term, there exists a typed protocol that solves the problem.

We are going to translate a typed hyperterm into a protocol inductively on
the type derivation. To make induction work, we use the following auxiliary
notions. An investigator ⟨i, x⟩ is a pair of a process and a program variable.
For a local formula φ, a system snapshot ⟨s⃗, v⃗⟩ satisfies ⟨i, x⟩(φ) iff si(x) is an
expression of φ. For a set of investigators I, a system snapshot satisfies I([i]φ)
iff it satisfies ⟨i, x⟩(φ) for some x with ⟨i, x⟩ ∈ I. This can be extended to all
global formulae, as I(φ+ ∧ ψ+) iff I(φ+) and I(ψ+); I(φ+ ∨ ψ+) iff I(φ+) or
I(ψ+). A system snapshot satisfies a global formula φ+ iff there exists a finite
set of investigators I such that the system snapshot satisfies I(φ+). A system
snapshot satisfies a context iff it satisfies every global formula in the context. A
protocol p realizes a hypersequent

(
Γ0 ⊢ φ+

0 · · · Γk ⊢ φ+
k

)
iff for any initial

system snapshot satisfying every Γk′ , there exists a family of investigator sets
(Ik′)k′∈{0,...,k} and, when p is executed with any fair schedule, the resulting

system snapshots eventually always satisfies at least one of φ+
k′ .

For a typed hyperterm O, we will give JOK, which is a tuple of programs
indexed by P. Also, we define LOM at the same time as JOK, where LOM is a
sequence of finite sets of investigators whose length is the same as that of O. We
refer to the last element of LO MM as LO M̂M, the second to last element ofLO M NM as LO M̂ NM and so on. We denote the right projection ofLO M̂M as LO M̂M′. If two sequents of investigator sets LOM and LO′M have
the same length, we define LOM ∪ LO′M to be the elementwise union.

We let ϵ denote (pi)i∈P where pi = ϵ for all i ∈ P. Also, (pi)i∈P; (qi)i∈P denotes
(pi; qi)i∈P where the same program variable does not have multiple substitutions
(we rename variables in the original typing derivation to satisfy this). And (p)j
denotes (qi)i∈P where qj = p and qi = ϵ for all i ̸= j. Below, we always choose
fresh program variables. The definition is inductive over the type derivation.

J[O0,O1]
−→
lj∆ (M)

←−
liΓ (N)K =JO0 MK; JO1 NK;

(l← LO0 M̂M′; y← l; )j ;

(l← LO1 N̂M′; x← l; )i ,

L[O0,O1]
−→
lj∆ (M)

←−
liΓ (N)M =LÔ0 MM ∪ LÔ1 NM

⟨{j, y}⟩ {⟨i, x⟩} ,JO abort K = JOK , LO abort M =LOM ∅ , JxK = ϵ ,



LxM ={⟨i, xx⟩} where [i]φ is the type of x ,JO ⟨M,N⟩gK =JO MK; JO NK ,LO ⟨M,N⟩gM =LO MM ∪ LO NM ,JO πg
a(M)K =JO MK ,LO πg
a(M)M =LO MM ,J[[O0,O1],O2] matchgM of inlg (x) .N0/inr

g (y) .N1K =JO0 MK;
xx ← match LO0 M̂M′ of inl (x) .x/inr (y) .ϵ;JO1 N0K;
xy ← match LO0 M̂M′ of inl (x) .ϵ/inr (y) .y;JO2 N1K ,L[[O0,O1],O2] matchgM of inlg (x) .N0/inr

g (y) .N1M =LO1 N0M ∪ LO2 N1M ,JO λx.MK =JO MK; z← λx.LO M̂M′ ,J[O0,O1] MNK =JO0 MK; JO1 NK;
z← LO0 M̂M′LO1 N̂M′ ,L[O0,O1] MNM =(LÔ0 MM ∪ LÔ1 NM) {⟨i, z⟩} ,

JO πl (M)K =JO MK; z← πl

(LO M̂M′) ,

LO πl (M)M =LÔ MM {⟨i, z⟩} .

We omitted translations of some constructs πr, inl, inr, but they are defined in
the same way as πl case. When (xi : [i]ιi)i∈P ▷ M : (

∧∧
i∈P[i]oi) is derivable, we

can define a protocol using the above translation. We set ii to be xxi , oi to be
arbitrarily chosen fresh program variables, L to be the set of locations occurring
in the derivation, we set the family of programs to be JMK; (oi ← πi(LM̂M′))i∈P,
where πi is obtained by composing i times πr to πl. We set g, d, ti accordingly
so that the program is typed. We can simulate a reduction sequence of the
hyperterm using a fair execution of the protocol.

And, since the protocol solves a problem for any fair schedule, it solves the
problem waitfreely. If we deny the claim, there must be an execution where a
nonfaulty process either (a) gives a wrong answer or (b) never gives an answer.
Either case, there is a step k when such a failure is inevitable. We can modify the
schedule after step k to a fair one, keeeping the failing behavior of the process.

Theorem 4 (Completeness). If there exists a typed protocol that solves a
typed input-output problem, the problem is solvable by a term.

Saks and Zaharoglou [19] showed that a finite repetition of the participating
set problem universally solves any waitfreely solvable problem. Also, n-party par-
ticipating problem can be solved by a tournament of the two-party participating
set problem. It suffices to show a λ-GD term solving the two-party problem.

In the participating set problem [7], each process i receives an id ci and returns
a set of id’s Si. The outputs must satisfy (i) i ∈ Si; (ii) either Si ⊆ Sj or Sj ⊆ Si;
and (iii) Si ⊆ Sj if i ∈ Sj for any i, j ∈ P. For two processes, ⟨S0, S1⟩ can be
⟨{c0}, {c0, c1}⟩, ⟨{c0, c1}, {c1}⟩ or ⟨{c0, c1}, {c0, c1}⟩.

We are going to encode the participating set problem in λ-GD. For this,
we introduce a base type called Id for process id’s. Let there be an injection



that maps a natural number i to a constant Ci : Id. The additional typing rules
involving Id are as follows, where 2 = (⊥ ⊃ ⊥) ∨ (⊥ ⊃ ⊥):

▷ cn : [i]Id
Γ ▷M0 : [i]Id Γ ▷M1 : [i]Id

Γ ▷M0 ==M1 : [i]2
.

The additional reduction is

cm == cn ⇝
{
inl (λx.x) (if m = n)

inr (λx.x) (otherwise) .

Also, IfM thenN0 elseN1 is an abbreviation formatchM of inl (x) .N0/inr (y) .N1.
We represent a finite set of id’s as a typed lambda term, whose type is [i](Id ⊃

2). Intuitively, a set takes an id and decides whether it is in or out. The empty-
set is represented by a term λx.inr (•). When a finite set S is represented by a
termM , the set S∪{c} is represented by a term λx. (If x == c then inl (•) elseMx).
With the above construction, we define abbreviations like {c0, c1, c2}.

Now, we are ready to construct a hyperterm solving the two-party partici-
pating set problem. We can obtain a derivation of:

x : [0]Id, y : [1]Id ▷ [⟨{
−→
l0ϵ (x) , x}, {y}⟩g, ⟨{x}, {

←−
l1ϵ (y) , y}⟩g] : [0](Id ⊃ 2) ∧ ([1](Id ⊃ 2)) .

One possible reduction sequence is as follows:

([], [], [⟨{
−→
l0ϵ (c0) , c0}, {c1}⟩g, ⟨{c0}, {

←−
l1ϵ (c1) , c1}⟩g])

⇝∗([l 7→ c0], [], [⟨{abort , c0}, {c1}⟩g, ⟨{c0}, {
←−
l1ϵ (c1) , c1}⟩g])

⇝∗([l 7→ c0], [l 7→ c1], ⟨{c0}, {c0, c1}⟩g) .

Moreover, the same initial configuration can reduce to

([l 7→ c0], [l 7→ c1], ⟨{c1, c0}, {c1}⟩g) or ([l 7→ c0], [l 7→ c1], ⟨{c1, c0}, {c0, c1}⟩g) .

There are no other normal forms. These three normal forms correspond to the
three answers for the two-party participating set problem.

5 Related Work

Avron [2] formulates a hypersequent calculus for Gödel–Dummett logic and
proves cut-elimination theorem using a method similar to Gentzen [12]. Also,
he explains the intuition behind the communication rule as “the inputs through
the ports in Γ ′

2 are transmitted to the component with output of type A1. The in-
puts through Γ ′

1 are treated similarly.” He did not mention the possibility of any
transmission failures, which we exploited in order to characterize waitfreedom.
Ciabattoni, Galatos and Terui [8] gives a class of logics that have hypersequent
calculi with cut-elimination. Their cut-elimination proof is general but it does
not obviously reveal the computational content.



Baaz, Ciabattoni and Fermüller [4] propose a hypersequent-style natural de-
duction for Gödel–Dummett logic, but did not define reduction. Fermüller [10]
gives a game semantics for Gödel–Dummett logic, which is based on Lorenzen
game [20] and essentially proof searching bottom-to-up.

Among numerous typed programming languages with parallelism, to our
knowledge, none exhibits the connection of Gödel–Dummett logic and waitfree-
dom. Abramsky [1]’s calculus PE2 for classical linear logic is deterministic [1,
Theorem 7.9] so that it is impossible to model waitfreedom using PE2. The π-
calculus [17], Join calculus [11], and even asynchronous π-calculus [16] have too
strong synchronization abilities to model waitfreedom because a process can wait
for an input.

Hirai [15] compares the temporal order of waitfree computation and the
Kripke models of a modal logic similar to Gödel–Dummett logic. The current
work witnesses the constructive content of his model theoretic comparison.

6 Future Work

As a programming language, λ-GD allows efficient execution because it requires
no synchronization among processes. We implemented a calculus similar to λ-
GD in a programming language Haskell3. A possible extension is adding syn-
chronization primitives. It would be interesting to compare different synchro-
nization primitives and different intermediate logics, generalizing waitfreedom
and Gödel–Dummett logic.

We are also planning to develop a waitfree protocol verification mechanism in
Coq because it is valuable to remove unnecessary synchronization while keeping
the program correct in high performance computing.

An anonymous refree pointed out that the introduction of modalities is in-
teresting on its own. We have not investigated the semantics of these modalities.

In λ-GD, the source of nondeterminism can be explicitly expressed as the
store prophecy. If we can find a semantic counterpart Sch of the store prophecy,
possibly, we can obtain a denotation DSch of terms using a denotation D for
normal forms. If that succeeds for classical logic, it will be interesting4.

7 Conclusion

We proposed λ-GD, a lambda calculus based on hypersequent calculus of Gödel–
Dummett logic. We proved normalization and non-abortfullness. The calculus
characterizes the typed version of waitfree computation. Our result hints broader
correspondence between proof theory and distributed computation.

3 Given Haskell Platform, a command cabal waitfree installs the implementation.
4 Kazushige Terui suggested the potential impact for classical logic.
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