A Lambda Calculus for Gödel-Dummett Logic Capturing Waitfreedom

Yoichi Hirai
Univ. of Tokyo, JSPS research fellow

2012-05-23, FLOPS 2012, Kobe

Curry-Howard Correspondence

Logic	Computation
Intuitionistic propositional logic	Simply-typed λ each term has a unique normal form
$+(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$	λ-GD $=\quad$ Gömal form not unique in general: utilize as distributed computation
$+\varphi \vee \neg \varphi$	many calculi $+\quad$ Classical propositional logic
Normal form not unique in general:	
fight with evaluation strategy	

This correspondence is based on
Brouwer-Heyting-Kolmogorov interpretation

Brouwer-Heyting-Kolmogorov Interpretation

explains logical connectives in intuitionistic logic

- A proof of $\mathbf{P} \wedge \mathbf{Q}$ is a pair $\langle x, y\rangle$ where x is a proof of P and y is a proof of Q
■ A proof of $\mathbf{P} \vee \mathbf{Q}$ is a pair $\langle\mathbf{i}, \mathbf{x}\rangle$ where $\mathbf{i}=0$ and x is a proof of P , or $\mathbf{i}=1$ and x is a proof of \mathbf{Q}
■ A proof of $\mathbf{P} \rightarrow \mathbf{Q}$ is a construction which permits us to transform any proof of \mathbf{P} into a proof of \mathbf{Q}.

Computational Interpretation of Implication $\mathbf{O} \rightarrow \mathbf{0}$

Computational Interpretation of Dummett Axiom

 $(\mathrm{O} \rightarrow \mathrm{A}) \vee(\mathrm{A} \rightarrow \mathrm{O}) \ldots$?Gödel-Dummett logic has Dummett Axiom $(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$, which must be realized for any φ and ψ.

or

Computational Interpretation of Dummett Axiom

 $(0 \rightarrow A) \vee(A \rightarrow 0)$

Computational Interpretation of Dummett Axiom

$$
(0 \rightarrow A) \vee(A \rightarrow 0)
$$

Computational Interpretation of Dummett Axiom

 $(0 \rightarrow A) \vee(A \rightarrow 0)$

Computational Interpretation of Dummett Axiom

 $(0 \rightarrow A) \vee(A \rightarrow 0)$

Computational Interpretation of Dummett Axiom

 $(0 \rightarrow A) \vee(A \rightarrow 0)$

Computational Interpretation of Dummett Axiom

 $(0 \rightarrow A) \vee(A \rightarrow 0)$

Computational Interpretation of Dummett Axiom

 $(0 \rightarrow A) \vee(A \rightarrow 0)$

Computational Interpretation of Dummett Axiom

 $(\mathrm{O} \rightarrow \mathrm{A}) \vee(\mathrm{A} \rightarrow \mathrm{O})$

$(0 \rightarrow A) \wedge(A \rightarrow O)$ is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

$(0 \rightarrow A) \wedge(A \rightarrow O)$ is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

$(0 \rightarrow A) \wedge(A \rightarrow O)$ is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

$(0 \rightarrow A) \wedge(A \rightarrow O)$ is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

$(\mathrm{O} \rightarrow \mathrm{A}) \wedge(\mathrm{A} \rightarrow \mathrm{O})$ is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

Waitfree $=$ "impossible to wait for other processes"

(free as in tax-free and alcohol-free)
A task can be waitfreely solvable or not.

A task $\subseteq I^{\mathbb{P}} \times \mathbf{O}^{\mathbb{P}}$ where \mathbb{P} is processes, I is inputs and O is outputs

A watifreely unsolvable task: $\{((x, y),(y, x)) \mid x, y \in\{0,1\}\}$
A waitfreely solvable task:
$\{((x, y),(x, x+y)),((x, y),(x+y, y)),((x, y),(x+y, x+y))$
$x, y \in\{0,1\}\}$

The definition of waitfreedom is long: involving a virtual machine Saks and Zaharoglou (2000)

Main Theorem

A task is

waitfreely solvable

solvable by a typable λ-GD-term

For a typed lambda calculus λ-GDfor Gödel-Dummett logic.

Formulas, Sequents, Hypersequents

Local Types
$\varphi::=\perp|\mathbf{P}| \varphi \rightarrow \varphi|\varphi \wedge \varphi| \varphi \vee \varphi$

Global Types
$\varphi^{+}::=[i] \varphi\left|\varphi^{+} \wedge \varphi^{+}\right| \varphi^{+} \vee \varphi^{+}$
where \mathbf{i} is a process

Sequent
$\mathcal{S}::=\Gamma \vdash \varphi^{+}$where Γ is a finite set of global formulas

Hypersequent

$$
\mathcal{H}::=\mathcal{S} \mid(\mathcal{S} \mid \mathcal{H})
$$

Hyper-Natural Deduction (Based on Avron's Hypersequents)

External Rules
$\operatorname{com}, \frac{\mathcal{H}|\Gamma, \Delta \vdash[\mathrm{i}] \varphi \quad \mathcal{H}| \Gamma, \Delta \vdash[\mathrm{j}] \psi}{\mathcal{H}|\Gamma \vdash[\mathrm{i}] \psi| \boldsymbol{\Delta} \vdash[\mathrm{j}] \varphi}$ and structural rules
Inner Global Rules
$\wedge \mathcal{E}_{0} \frac{\mathcal{H} \mid \Gamma \vdash \varphi^{+} \wedge \psi^{+}}{\mathcal{H} \mid \Gamma \vdash \varphi^{+}} \quad \wedge \mathcal{E}_{1} \frac{\mathcal{H} \mid \Gamma \vdash \varphi^{+} \wedge \psi^{+}}{\mathcal{H} \mid \Gamma \vdash \psi^{+}}$ and $\wedge \mathcal{I}, \vee \mathcal{E}, \vee \mathcal{I}$

Inner Local Rules

$[\mathrm{i}] \rightarrow \mathcal{E} \frac{\mathcal{H}|\mathrm{r} \vdash[\mathrm{i}](\varphi \rightarrow \psi) \quad \mathcal{H}| \mathrm{r} \vdash[\mathrm{i}] \varphi}{\mathcal{H} \mid \mathrm{r} \vdash[\mathrm{i}] \psi}$
and $\perp \mathcal{E}, \wedge \mathcal{E}, \wedge \mathcal{I}, \vee \mathcal{E}, \vee \mathcal{I}$

Example Derivation of $[0](\mathrm{O} \rightarrow \mathrm{A}) \vee[1](\mathrm{A} \rightarrow \mathrm{O})$

$$
\begin{aligned}
& \text { com }{ }^{[0] O},[1] \mathrm{A} \vdash[0] \mathrm{O} \quad[0] \mathrm{O},[1] \mathrm{A} \vdash[1] \mathrm{A} \\
& {[\mathrm{i}] \rightarrow \mathcal{I} \xlongequal{[0] \mathrm{O} \vdash[0] \mathrm{A} \mid[1] \mathrm{A} \vdash[1] \mathrm{O}}} \\
& {[i] \vee \mathcal{I}} \\
& \mathrm{EC} \frac{\vdash[0](\mathrm{O} \rightarrow \mathrm{~A}) \vee[1](\mathrm{A} \rightarrow \mathrm{O}) \mid \vdash[0](\mathrm{O} \rightarrow \mathrm{~A}) \vee[1](\mathrm{A} \rightarrow \mathrm{O})}{\vdash[0](\mathrm{O} \rightarrow \mathrm{~A}) \vee[1](\mathrm{A} \rightarrow \mathrm{O})}
\end{aligned}
$$

The conclusion
■ as a type, represents the orange-apple protocol
$■$ as a formula, without modalities [i], is the Dummett axiom.

Typing Terms

External Rules

$$
\frac{\mathcal{G}_{0} \mid\left\ulcorner, \Delta \triangleright \mathrm{M}:[\mathrm{i}] \varphi \quad \mathcal{G}_{1} \mid \mathrm{\Gamma}, \Delta \triangleright \mathrm{~N}:[\mathrm{j}] \psi\right.}{\left[\mathcal{G}_{0}, \mathcal{G}_{1}\right] \mid\left\ulcorner\triangleright \overrightarrow{\ell_{\Delta}^{\prime}}(\mathrm{M}):[\mathrm{i}] \psi \mid \Delta \triangleright \stackrel{\ell_{\Gamma}^{j}}{*}(\mathrm{~N}):[\mathrm{j}] \varphi\right.}
$$

Inner Global Rules

$$
\frac{\mathcal{G} \mid \Gamma \triangleright \mathrm{M}: \varphi^{+} \wedge \psi^{+}}{\mathcal{G} \mid\left\ulcorner\triangleright \pi_{1}^{\mathrm{g}}(\mathrm{M}): \varphi^{+}\right.} \quad \frac{\mathcal{G} \mid \Gamma \triangleright \mathrm{M}: \varphi^{+} \wedge \psi^{+}}{\mathcal{G} \mid \Gamma \triangleright \pi_{\mathrm{r}}^{\mathrm{g}}(\mathrm{M}): \psi^{+}}
$$

Inner Local Rules

$$
\begin{aligned}
& \bar{x}:[i] \varphi, \Gamma \triangleright x:[i] \varphi \\
& \frac{\mathcal{G} \mid \mathrm{x}:[\mathrm{i}] \varphi, \Gamma \triangleright \mathrm{M}:[\mathrm{i}] \psi}{\mathrm{G} \mid \Gamma \triangleright \lambda \mathrm{x} . \mathrm{M}:[\mathrm{i}](\varphi \rightarrow \psi)} \\
& \mathcal{G}_{0}\left|\Gamma \triangleright \mathrm{M}:[\mathrm{i}](\varphi \rightarrow \psi) \quad \mathcal{G}_{1}\right| \Gamma \triangleright \mathrm{N}:[\mathrm{i}] \varphi \\
& {\left[\mathcal{G}_{0}, \mathcal{G}_{1}\right] \mid \Gamma \triangleright \mathrm{MN}:[\mathrm{i}] \psi}
\end{aligned}
$$

where \mathcal{G}_{0} and \mathcal{G}_{1} has the same types.

Example Typed Term

$$
\begin{aligned}
& x:[0] 0, y:[1] A \triangleright x:[0] O \quad x:[0] 0, y:[1] A \triangleright y:[1] A \\
& \mathrm{x}:[0] \mathrm{O} \triangleright \vec{\ell}(\mathrm{x}):[0] \mathrm{A} \mid \mathrm{y}:[1] \mathrm{A} \triangleright \overleftarrow{\ell}(\mathrm{y}):[1] \mathrm{O} \\
& \mathrm{x}:[0] \mathrm{O}, \mathrm{y}:[1] \mathrm{A} \triangleright \vec{\ell}(\mathrm{x}):[\mathrm{0}] \mathrm{A} \mid \mathrm{x}:[\mathrm{0}] \mathrm{O}, \mathrm{y}:[1] \mathrm{A} \triangleright \overleftarrow{\ell}(\mathrm{y}):[1] \mathrm{O} \\
& \mathrm{x}:[0] \mathrm{O}, \mathrm{y}:[1] \mathrm{A} \triangleright \operatorname{in}^{\mathrm{g}}(\vec{\ell}(\mathrm{x})): \varphi \mathbf{|} \mathrm{x}:[0] \mathrm{O}, \mathrm{y}:[1] \mathrm{A} \triangleright \operatorname{int}^{\mathrm{g}}(\overleftarrow{\ell}(\mathrm{y})): \varphi \\
& \mathrm{x}:[0] \mathrm{O}, \mathrm{y}:[1] \mathrm{A} \triangleright\left[\mathrm{inl} \mathfrak{I}^{\mathrm{g}}(\vec{\ell}(\mathrm{x})), \operatorname{inrg}^{g}(\overleftarrow{\ell}(\mathrm{y}))\right]:(\varphi:=)[0] \mathrm{A} \vee[1] \mathrm{O}
\end{aligned}
$$

Example Reduction 1

From the previously typed term:
write reduction

$$
\begin{aligned}
&\left(\left\{\begin{aligned}
\{ & \},\{
\end{aligned} \quad\right\},\left[\operatorname{inl}^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow(\{\ell \mapsto x\},\{ \},\left[\inf ^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right)
\end{aligned}
$$

Example Reduction 1

From the previously typed term:
read reduction

$$
\begin{aligned}
(\{\quad\},\{ & \},\left[\operatorname{inl}^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
\rightsquigarrow(\{\ell \mapsto x\},\{ & \},\left[\operatorname{inl^{g}}(\vec{\ell}(x)), \inf ^{g}(\overleftarrow{\ell}(y))\right]\right) \\
\rightsquigarrow(\{\ell \mapsto x\},\{ & \},\left[\operatorname{inl^{g}}(\text { abort }), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right)
\end{aligned}
$$

Example Reduction 1

From the previously typed term:
write reduction

$$
\begin{aligned}
& \left(\{\quad\},\{\quad\},\left[\operatorname{in} 1^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\quad\},\left[\operatorname{in} l^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\quad\},\left[\text { in }{ }^{\mathrm{g}}(\text { abort }), \operatorname{inr}^{\mathrm{g}}(\overleftarrow{\ell}(\mathrm{y}))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\ell \mapsto y\},\left[\left.i n\right|^{g}(\text { abort }), \operatorname{inr}^{\mathrm{g}}(\overleftarrow{\ell}(\mathrm{y}))\right]\right)
\end{aligned}
$$

Example Reduction 1

From the previously typed term:
read reduction

$$
\begin{aligned}
& \text { (\{ } \left.\quad\},\{\quad\},\left[\operatorname{ing}^{g}(\vec{\ell}(x)), \operatorname{ing}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \leadsto\left(\{\ell \mapsto x\},\{\quad\},\left[\operatorname{in\prime g}(\vec{\ell}(x)), \inf ^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\quad\},\left[\text { in }^{g}(\text { abort }), \operatorname{ing}^{g}(\overleftarrow{\ell}(\mathrm{y}))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto \mathrm{x}\},\{\ell \mapsto \mathrm{y}\},\left[\mathrm{inl}^{\mathrm{g}}(\text { abort }), \inf ^{\mathrm{g}}(\overleftarrow{\ell}(\mathrm{y}))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto \mathrm{x}\},\{\ell \mapsto \mathrm{y}\},\left[\text { in }\left.\right|^{g}(\text { abort }), i n r^{g}(\mathrm{x})\right]\right)
\end{aligned}
$$

Example Reduction 1

From the previously typed term: abort propagation

$$
\begin{aligned}
& \left(\{\quad\},\{\quad\},\left[\operatorname{in} I^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\quad\},\left[\operatorname{in} l^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\quad\},\left[\text { in }{ }^{g}(\text { abort }), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\ell \mapsto y\},\left[\left.i n\right|^{g}(\text { abort }), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto \mathrm{x}\},\{\ell \mapsto \mathrm{y}\},\left[\left.\mathrm{in}\right|^{\mathrm{g}}(\text { abort }), \mathrm{inr}^{\mathrm{g}}(\mathrm{x})\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\ell \mapsto y\},\left[\text { abort }, \text { inr }^{g}(x)\right]\right)
\end{aligned}
$$

Example Reduction 1

From the previously typed term: abort propagation

$$
\begin{aligned}
& \left(\{\quad\},\{\quad\},\left[\operatorname{inl}{ }^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\quad\},\left[\operatorname{in} I^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\quad\},\left[\text { in } I^{g}(\text { abort }), \text { inr }^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\ell \mapsto y\},\left[\text { in }{ }^{g}(\text { abort }), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto \mathrm{x}\},\{\ell \mapsto \mathrm{y}\},\left[\mathrm{inl}^{\mathrm{g}}(\text { abort }), \mathrm{inr}^{\mathrm{g}}(\mathrm{x})\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\ell \mapsto y\},\left[\text { abort }, \text { inr }^{g}(x)\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\ell \mapsto y\}, \operatorname{inr}^{g}(x)\right)
\end{aligned}
$$

Example Reduction 2

From the same term:

$$
\begin{aligned}
& \left(\{\quad\},\{\quad\},\left[\operatorname{in} l^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
& \rightsquigarrow\left(\{\quad\},\{\ell \mapsto y\},\left[\operatorname{in} I^{g}(\vec{\ell}(x)), \operatorname{inr}^{\mathrm{g}}(\overleftarrow{\ell}(\mathrm{y}))\right]\right) \\
& \rightsquigarrow\left(\{\quad\},\{\ell \mapsto y\},\left[\left.\operatorname{in}\right|^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\text { abort })\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto \mathrm{x}\},\{\ell \mapsto \mathrm{y}\},\left[\left.\operatorname{in}\right|^{\mathrm{g}}(\vec{\ell}(\mathrm{x})), \text { inr }^{\mathrm{g}}(\text { abort })\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\ell \mapsto y\},\left[\text { in }\left.\right|^{g}(y), \text { inr }^{\mathrm{g}}(\text { abort })\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\ell \mapsto y\},\left[\text { in }{ }^{g}(y), \text { abort }\right]\right) \\
& \rightsquigarrow\left(\{\ell \mapsto x\},\{\ell \mapsto y\}, \operatorname{ing}^{g}(y)\right)
\end{aligned}
$$

Example Reduction 3

Still from the same term:

$$
\begin{aligned}
& \left(\{\quad\},\{\quad\},\left[\left.\operatorname{in}\right|^{g}(\vec{\ell}(x)), \operatorname{inr}^{g}(\overleftarrow{\ell}(y))\right]\right) \\
\rightsquigarrow & \left(\{\ell \mapsto x\},\{\quad\},\left[\left.\operatorname{in}\right|^{g}(\vec{\ell}(x)), \operatorname{inr}^{\mathrm{g}}(\overleftarrow{\ell}(\mathrm{y}))\right]\right) \\
\rightsquigarrow & \left(\{\ell \mapsto \mathrm{x}\},\{\ell \mapsto \mathrm{y}\},\left[\left.\operatorname{in}\right|^{\mathrm{g}}(\vec{\ell}(\mathrm{x})), \operatorname{inr}^{\mathrm{g}}(\overleftarrow{\ell}(\mathrm{y}))\right]\right) \\
\rightsquigarrow & \left(\{\ell \mapsto \mathrm{x}\},\{\ell \mapsto \mathrm{y}\},\left[\operatorname{inl}^{\mathrm{g}}(\mathrm{y}), \operatorname{inr}^{\mathrm{g}}(\overleftarrow{\ell}(\mathrm{y}))\right]\right) \\
\rightsquigarrow & \left(\{\ell \mapsto \mathrm{x}\},\{\ell \mapsto \mathrm{y}\},\left[\operatorname{inl}^{\mathrm{g}}(\mathrm{y}), \operatorname{inr}^{\mathrm{g}}(\mathrm{x})\right]\right)
\end{aligned}
$$

Results

Strong normalization No typed term can reduce infinitely often Non-abortfullness No typed term can reduce into abort
Waitfree characterization
A task is waitfreely solvable \Leftrightarrow solvable by a typed term

History

Lamport (1977) introduced what is now called waitfree computing
Avron (1991) introduced a hypersequent calculus for Gödel-Dummett logic and showed cut-elimination
Gafni and Koutsoupias (1999)
showed that it is undecidable whether a task can be solved waitfreely
Herlihy and Shavit (1999), Saks and Zaharoglou (2000)
gave a topological characterization of waitfree computation (Gödel Prize 2004)

I found waitfreedom when I was looking at past Gödel Prizes

Avron's Question and My Answer

Avron (1991): it seems to us extremely important to determine the exact computational content of [the intermediate logics with cut-elimination for hypersequents] - and to develop corresponding " λ-calculi."

I answer:

- The computational content of Gödel-Dummett logic is waitfreedom

■ $\boldsymbol{\lambda}$-GD is the $\boldsymbol{\lambda}$-calculus for it
Fermüller (2003) gave a natural deduction but not reductions
Future Work:

- generalizing to more logics and investigating classical logic

■ adapting to weaker shared memory consistency

