
AN INTUITIONISTIC EPISTEMIC LOGIC FOR

ASYNCHRONOUS COMMUNICATION

非同期通信のための直観主義知識論理

by

Yoichi Hirai

平井洋一

A Master Thesis

修士論文

Submitted to

the Graduate School of the University of Tokyo

on February 10, 2010

in Partial Fulfillment of the Requirements

for the Degree of Master of Information Science and

Technology

in Computer Science

Thesis Supervisor: Masami Hagiya 萩谷昌己

Professor of Computer Science

ABSTRACT

We apply formal constructive reasoning to asyncyhronous communication. After defining

a general-purpose logic called intuitionistic epistemic logic (IEC in short), we solve a mo-

tivating example problem, characterising waitfree communication logically in response to

the abstract simplicial topological characterisation of waitfree computation given by Herlihy,

Shavit, Saks and Zaharoglou in the celebrated Gödel Prize winning papers.

Intuitionistic logic is originally a formalisation of a single mathematician whose knowl-

edge increases over time. The logic IEC formalises multiple agents who communicate asyn-

chronously and whose knowledge increases over time. The logic IEC has a simple language:

it has epistemic modality but no temporal modality so that it is simpler than many previous

logics for communication. We do not need temporal modality because we regard time as the

partial order in the semantics of intuitionistic epistemic logic. Before defining the deduction

system, we first extend the informal intuitionistic reading of logical connectives. Precisely,

we extend Brouwer–Heyting–Kolmogorov interpretation of logical connectives by adding one

clause reagarding the additional epistemic modality Ka. After stating the informal meaning

for the modality, we define a deduction system and a Kripke semantics meeting this intuition.

Soundness, strong completeness, finite model property, disjunction property and decidability

are shown. We also investigate the relationship between IEC and classilcal modal logic with

multple S4 modalities.

On top of the logic IEC, we give an axiom type that characterises sequential consis-

tency for shared memory. The advantage of intuitionistic logic over classical logic is shown

in an example where a set of axioms characterises sequential consistency on shared memory.

The axioms for sequential consistency are meaningless in classical logic while meaningful in

intuitionistic logic. The axioms are similar to the axiom type for prelinerilty. This similar-

ity reflects the analogy between sequential consistency for shared memory scheduling and

linearity for Kripke frames: both require antisymmetry on schedules or models.

Finally, under sequential consistency, we give soundness and completeness between a set of

logical formulas called waitfree assertions and a set of models called waitfree schedule models.

論文要旨

構成主義的な形式的推論を，非同期通信に応用する．直観主義知識論理と呼ぶ汎用の論理を定義

してから，価値を伝えるための例題として，waitfreeな通信を論理的に特徴づける．この論理学的

な特徴づけは，ゲーデル賞を取った，Herlihyと Shavitと Saksと Zaharoglouとによる，waitfree

計算の抽象単体幾何学的な特徴づけに応えるものである．

直観主義論理はそもそも知識を増大させつづける数学者を形式化した．直観主義知識論理は，非

同期に通信をとりあって知識を増大させつづける複数の主体を形式化する．直観主義知識論理の

言語は，知識様相はあっても時相様相はないので，既存の通信を扱う多くの論理よりも単純であ

る．時相様相がないのは，直観主義論理の意味論に登場する半順序構造がそのまま時間を表すと

みなすからだ．直観主義知識論理の推論体系を定義する前に，直観主義における論理結合子の直

観的な読みを拡張する．具体的には，論理結合子の Brower–Heyting–Kolmogorov解釈に，知識

様相 Ka に関する一条を追加する．知識様相の直観的な読みを説明した後に，直観主義知識論理

の推論体系とKripke意味論を定義する．健全性と強い完全性と有限モデル性と選言性と決定可能

性とを示す．さらに，S4に従う様相を複数もつ古典様相論理との関連を調査する．

直観主義知識論理上に，共有メモリの逐次整合性を特徴づける公理型を与える．この公理型が

古典論理では意味を失うが直観主義論理では意味をもつところに，古典論理に対する直観主義論

理の優位性がしめされる．この公理型はKripkeモデルの擬線型性を特徴づける公理型に類似して

いる．この類似は，逐次整合性と擬線型性の類似を反映している: どちらも，スケジュールやモ

デルに反対称性を要求する．

最後に，逐次整合性のもとで，waitfree主張と呼ばれる論理式たちと，waitfreeスケジュール

モデルと呼ばれるモデルたちに対して，健全性と完全性を与える．

Acknowledgements

The author thanks Masami Hagiya, who patiently waited for the author, Yoshihiko

Kakutani, who reminded the author of the axiom 5, and Tatsuya Abe, who pointed out

the fact that Shoenfield’s textbook has conservativity immediately after completeness.

The author wishes to express his gratitude to the anonymous refrees of the conference

PPL2010 for their comments that considerably improved the presentation of Chapter 4.

Contents

1 Introduction 1

1.1 The Reason for Another Logic . 1

1.2 Intuitionistic Epistemic Logic . 2

1.3 Application to Wait-free Communication 5

1.4 Structure of the Paper . 6

1.5 Preliminaries and Notations . 6

2 Intuitionistic Epistemic Logic 7

2.1 Formulas . 7

2.2 Informal Explanation by BHK-Interpretation 7

2.3 Deduction System . 8

2.4 Semantics . 10

2.5 Soundness . 12

2.6 Disjunction Property . 13

2.6.1 Properties of the Auxiliary Functions 13

2.6.2 The Slash Relation . 15

2.6.3 Disjunction Property . 18

2.7 Strong Completeness and Finite Model Property 20

2.7.1 Strong Completeness . 24

2.7.2 Finite Model Property . 25

2.8 Adding Double Negation Elimination 26

2.9 Conservativity over the Fragment without Disjunction 26

2.10 Formula Translation from Classical S4 31

2.11 Model Translation . 35

2.12 Comparison with Creative Subject Argument 38

2.13 Future Work . 38

i

3 Axiom Type for Sequential Consistency 39

3.1 Definitions . 39

3.2 Soundness . 40

3.3 Strong Completeness . 40

4 Waitfree Computation 43

4.1 Problem Domain . 43

4.2 Logical Representation of the Problem 43

4.3 Representation of Schedules as Models 45

4.4 Decidability of Solvability of Waitfree Task Specification 48

5 Related Work 50

6 Conclusion 52

7 Discussion 54

7.1 Waitfree Computation . 54

7.2 Sequential Consistency or Linearizability 54

7.3 Other Consistency Models . 55

7.4 The Cost of Monotonic Reasoning: Latency versus Throughput 55

7.5 λ-calculus . 56

7.6 Disjunction Distribution Over K Modality 56

7.7 Relationship with Intuitionistic Predicate Logic 56

ii

List of Figures

2.1 Deduction rules of IEC. (ax) stands for axiom, (w) for weakening, (c)

for contraction, (e) for exchange, (ispec) for introspection and (nec)

for necessitation. (♦-I) denotes the introduction rule for connective ♦.

(♦-E) denotes the elimination rule for connective ♦. 9

2.2 Adding a classical principle called double negation elimination destroys

the meaning of modalities. Note that weakening is used in the proof. . 27

2.3 Parts of Proofs for Lemma 2.10.3. I.H. stands for induction hypothesis. 33

2.4 (∨-E) case in the proof of Theorem 2.10.4. 34

3.1 A proof diagram for an example theorem in `sc. 42

4.1 A model R(·, σ) induced by the partial schedule σ = ({a, b}, {a}, {b}).
A solid arrow pointing to (x, n) shows an fx mapping. Dotted arrows

show ¹ relations. We omit implied arrows and the valuation. 46

7.1 How subdivision of simplicial complexes is transformed into IEC model.

Left: A simplex s0 = {va, vb} is subdivided into s1 = {va, wb}, s2 =

{wa, wb} and s3 = {wa, vb}. Right: IEC frame obtained from the left

subdivision. 55

iii

Chapter 1

Introduction

In this thesis, we show that formal constructive reasoning is applicable to asynchronous

communication. We define a new logical deduction system called intuitionistic epis-

temic logic. Although there are infinitely many possible deduction systems, we propose

this system because we are surprised to see that such a simple and useful logic has

never been proposed, or if ever, has not gained popularity.

There are at least two different ways of reasoning about knowledge. In one view of

knowledge using Kripke semantics, which classical epistemic logic employs, knowledge

is defined as proposition valid in all possible worlds that is possible to an agent. On

the other hand, knowledge can be seen as something agents can send and receive. We

unify these two notions of knowledge into the semantics of the logic we present. We

define the semantics formally in the style of Kripke semantics. At the same time, an

extension to BHK-interpretation reveals that asynchronous communication is implicit

in the formal definition.

1.1 The Reason for Another Logic

Motivation: reasoning about concurrent systems We give a formal deduction

system for reasoning about asynchronous communication. The motivation for doing

it is the fact that creating a concurrently working system with asynchronous com-

munication and especially testing and debugging it is notoriously difficult because of

nondeterministic scheduling. When the cost of testing and debugging is high, it is

reasonable to spend more cost on ensuring correctness of the system at earlier stages

like designing phase or implementation phase, not testing and debugging. In order

to ensure correctness at an earlier stage, it is crucially important to reason about the

system correctly because at such an early stage, knowledge about the system can only

1

be obtained by reasoning, not by testing.

Method: giving a formal deduction system A formal deduction system math-

ematically defines available form of reasoning. In order to define reasoning mathemat-

ically, a formal deduction system uses languages defined mathematically. The main

advantage of the reasoning on a formal deduction system over reasoning in a natural

language is the former is independent of most implicit assumptions on which the latter

is dependent so that the validity of the former formal reasoning can be checked more

rigorously than the latter informal reasoning.

We seek to have a formal deduction system as simple and learnable as possible

to reason about asynchronous communication. We choose to give an epistemic logic,

i.e., a logic with an operator expressing an agent’s knowledge because mentioning

agents’ knowledge appeals to human intuition. For example, as Halpern and Zuck [16]

point out, Bochmann and Gecsei’s paper [6] written in 1977 already uses the notion

of knowledge when reasoning about protocols:

Verification . . . will correspond . . . to finding out whether and in which cir-

cumstances the sender . . . can “know” that all data . . . have been delivered

correctly1.

Previous work presumes a global clock unnecessarily Existing formal epis-

temic logic for reasoning about communication implicitly or explicitly assume a global

clock. Even if they are capable of reasoning about asynchronous communication, they

first consider the synchronous case and then define the asynchrony in terms of igno-

rance of the global situation. This way, asynchronous communication can be dealt

with successfully as done in Halpern’s famous work [11, 14] However, the procedure

of considering the global clock and then forgetting it makes formal reasoning unneces-

sarily complicated: we propose a formal deduction system whose semantics does not

contain the notion of a global clock anywhere.

1.2 Intuitionistic Epistemic Logic

The main contribution of this thesis is giving definition of intuitionistic epistemic logic

(IEC for short) and investigating it.

1The dots . . . and a period by the author.

2

Abstraction of Herlihy and Shavit’s topological model In order to reason

about general asynchronous communication, we abstracted some important features

from the mathematical model for wait-free computation proposed by Herlihy and

Shavit [19]. The obtained model is abstract enough so that it can be described as

a Kripke model of intuitionistic propositional logic equipped with additional functions

on possible worlds.

Two views on knowledge

Original intuitionistic meaning of knowledge Agents in asynchronous systems

can obtain knowledge about other agents only by receiving some constructions from

them, not by waiting for a fixed length of time. This specific style of knowledge,

where obtaining knowledge requires obtaining physical constructions, is the same as

the style of knowledge of intuitionistic, constructive reasoners. That is the reason

why we deliberately choose intuitionistic not classical meanings for the basic logical

connectives, especially ⊃ and ∨, although classical logic is more popularly used among

computer scientists and mathematicians. The abstract Kripke model for asynchronous

communication can be seen as a description of agents passing around constructions

that ensure propositions.

We extend the language of intuitionistic propositional logic with a unary operator

Ka, whose meaning can be expressed as: a proof of Kaϕ is a construction that witnesses

agent a’s acknowledgement of a proof of ϕ and also contains the acknowledged proof.

This formulation of knowledge is original. This meaning is different from that of

classical epistemic logic where the meaning of Ka can be expressed as: Kaϕ is valid if

and only if ϕ is valid in all possible worlds that agent a thinks possible.

One advantage of our meaning of Ka over that of classical meaning is that it can

express communication without the help of another modality. Namely, in our meaning,

a proof of KbKaP is a construction that is passed from agent a to agent b. On the other

hand, in classical meaning, the same formula expresses nothing about communication:

KbKaP is valid when P is valid in all possible worlds that agent b in any possible

world that agent a thinks possible thinks possible.

Intuitionistic logic can be seen as a logic describing an agent whose knowledge in-

creases over time. The logic IEC can be seen as a logic describing multiple agents that

asynchronously communicate with each other and increase their knowledge. Although

IEC deals with communication, the logic has only epistemic modalities so that it has

simpler syntax than many other logics for communication.

3

The problem with classical logic Classical logic asserts the Law of Excluded

Middle, which states either a proposition or the negation of it is always valid. The

Law of Excluded Middle asserts that either a message has reached the intended receiver

or it has not reached the intended receiver. We point out that this reasoning assumes

the existence of a current state of the world. The notion of the current state implicitly

assumes global clock within the use of the adjective “current”.

In classical epistemic logic, the description of knowledge relies on the notion of

possible worlds. An agent can distinguish some pairs of possible worlds while he or

she cannot distinguish the other pairs of possible worlds. When the actual state is

one of the possible worlds, agent a knows something when it is valid in all possible

worlds indistinguishable from the actual state. In this description of knowledge, all

possible states are considered to exist at the same time. Knowledge change can only

be modelled via a sequence of such models. The sequence forms a global clock, which

is unnecessary to describe asynchronous communication.

For example, in dynamic epistemic logic [8, 40], communication is instantaneous

and forms common knowledge. A message changes the model globally. Although no

clock appears syntactically, the instantaneous change of models implicitly assumes

every agent shares the same uniform progress of time and all events are lined up in

a total order. Dynamic epistemic logic might successfully describe human intuition

on communication, which is unfortunately incorrect for reasoning about asynchronous

communication. In fact, as Halpern [15] pointed out, it is asynchronously impossible

to form a new common knowledge.

Aside from dynamic epistemic logic, some logics [35] have numbering in syntax

or in semantics that represents a global clock. Although it is possible to understand

asynchronous communication using a hypothetical global clock and then forgetting

it as in [15] a model without a global clock would be simpler and more preferable

according to Occam’s razor.

Reducing the number of design choices by identifying intuitionistic relation

with temporal relation There were other choices: there have been proposed a huge

number of epistemic logics for communication [3–5, 7, 15, 23, 27, 30, 31, 39] and a

huge number of intuitionistic modal logics [1, 10, 29, 30, 32]. In both cases, when

considered under Kripke semantics, the huge variety of logics comes from the diversity

of relationships between two binary relations on the state space. In intuitionistic

modal logic, the two relations are: (a) which state is prior to which state with regard

to Kripke monotonicity and (b) the modality in which state refers to which state. In

4

logics for communication, the two relationships are: (a’) which state is temporarily

prior to which state and (b’) from which state to which state a communication occurs.

The semantics of IEC uses a binary relation on the states and functions on the

states instead of additional binary relations. For an agent to know something about

another agent, it is necessary to receive something from the other agent. When an

agent receives something from another agent, the receiver can identify the sender. We

formalised this identification as a function on the states. This choice dramatically

limits the room for design choice. Also, we identify relations (a) with (a’) and (b) with

(b’) in order to make the language of IEC simpler.

Formalising available reasoning We give a deduction system and show soundness

(Theorem 2.5.1), disjunction property (Theorem 2.6.20), strong completeness (Theo-

rem 2.7.10), finite model property (Theorem 2.7.15) and decidability (Theorem 2.7.16).

1.3 Application to Wait-free Communication

Since the semantics for IEC is inspired by the topological characterisation of wait-free

computation given by Herlihy and Shavit [19], we applied the logic IEC to wait-free

computation in order to see what change is caused by the abstraction of simplicial

complexes to Kripke models.

Sequential consistency The topological characterisation by Herlihy and Shavit [19]

implicitly assumes sequential consistency [26] of shared memory. This motivated us

to characterise sequential consistency with the axiom type (Kmϕ ⊃ Kmψ) ∨ (Kmψ ⊃
Kmϕ) in the logic IEC for asynchronous computation. Technically, we defined a

class of models called sequential models and proved soundness (Lemma 3.2.1) and

completeness (Theorem 4.3.4) of the axiom type with respect to the sequential models.

Wait-free communication A waitfree protocol over shared memory [18] assigns a

program to each process so that no process waits for another process. Some tasks can

be solved by a well-chosen waitfree protocol while the others cannot.

For example, it is waitfreely impossible for both of two processes to attain the input

value of the other process. On the other hand, it is waitfreely possible for either one

of two processes to attain the input value of the other process. A waitfree protocol

that solves this task is:

• process a tells the memory m that ϕ holds, and then m replies back to a,

5

• process b tells the memory m that ψ holds, and then m replies back to b.

After this protocol finishes, either ϕ has been communicated from a to b or ψ has been

communicated from b to a.

In the logic IEC, this fact is represented by a judgement KaKmKaϕ,KbKmKbψ `sc

KaKbψ∨KbKaϕ, which is deducible in IEC with sequential consistency axioms (Fig-

ure 3.1).

Herlihy and Shavit [19] characterised waitfree computation using simplicial topol-

ogy. Using their characterisation, Gafni and Koutsoupias [12] showed that it is un-

decidable whether a task is waitfreely solvable or not. When tasks are restricted to

communication defined by a class of logical formulas that we call waitfree assertions,

we can characterise waitfreely available communication logically (Theorem 4.3.4) and

it is decidable whether a task is waitfreely solvable or not (Theorem 4.4.2).

1.4 Structure of the Paper

The rest of the paper is mostly in the bottom-to-top order. In Chapter 2, we define

and examine the syntax and semantics of intuitionistic epistemic logic. In Chapter 3,

we characterise sequential consistency of shared memory in IEC. In Chapter 4, we

characterise waitfree communication under sequential consistency. Chapter 5 compares

our work with others. In Chapter 6, we summarise our achievements. In Chapter 7,

we treat issues including informal speculation and future work.

1.5 Preliminaries and Notations

We assume inductive definitions using BNF and coinductive definition. P(X) denotes

the powerset of X. For a symbol or a sequence of symbols p, p+ denotes repetition

of p more than zero times and p∗ denotes repetition of p more than or equal to zero

times.

6

Chapter 2

Intuitionistic Epistemic Logic

In this chapter, we give a logic called intuitionistic epistemic logic. The logic has epis-

temic modality Ka in addition to ordinary logical connectives (∧,∨,⊃,⊥) of proposi-

tional logic. We explain the meaning of the new modality Ka informally, by extending

the Brouwer–Heyting–Kolmogorov interpretation (BHK-interpretation) of logical con-

nectives, which dates back to 1930’s (Heyting [21, 22] are cited by Troelstra et al. [38]).

2.1 Formulas

We fix a countably infinite set of propositional symbols PV ar and a finite set of agents

A. Let P,Q, . . . run over the propositional symbols.

Definition 2.1.1. We define a formula ϕ by the BNF:

ϕ ::= ⊥ | P | (Kaϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ ⊃ ϕ)

where a ∈ A stands for an agent.

We sometimes omit the parenthesis when no confusion occurs. We use = for

syntactic equality of formulas. The notation (¬ϕ) stands for (ϕ ⊃ ⊥). For a sequence

of formula Γ = (ϕi), the notation KaΓ stands for the sequence (Kaϕi).

2.2 Informal Explanation by BHK-Interpretation

Intuitionistic meanings for logical connectives can be presented as following sentences

called BHK-interpretation1:

1Taken from Troelstra and van Dalen’s textbook [38, Ch. 1]: author made notational modification

of logical formulas and omission of quantifiers ∀ and ∃.

7

(H1) A proof of ϕ∧ψ is given by presenting a proof of ϕ and a proof of

ψ.

(H2) A proof of ϕ∨ψ is given by presenting either a proof of ϕ or a proof

of ψ (plus the stipulation that we want to regard the proof presented

as evidence for ϕ ∨ ψ2).

(H3) A proof of ϕ ⊃ ψ is a construction which permits us to transform

any proof of ϕ into a proof of ψ.

(H4) Absurdity ⊥ (contradiction) has no proof; a proof of ¬ϕ is a con-

struction which transforms any hypothetical proof of ϕ into a proof

of a contradiction.

In this paper, we consider extending BHK-interpretation with another stipulation for

epistemic modality:

(HK) A proof of Kaϕ is a construction that witnesses agent a’s acknowledgement

of a proof of ϕ and also contains the acknowledged proof.

We choose to regard knowledge as acknowledgement of proofs so that the modality Ka

informally describes knowledge of agent a. The formalisation of knowledge is different

from that in classical epistemic logic, where knowledge is described as a limitation on

the ability to distinguish possible worlds.

2.3 Deduction System

The unary operators connect more strongly than the binary operators. We sometimes

omit the parentheses when no confusion occurs. We use = for syntactic equality

of formulas. The notation (¬ϕ) stands for (ϕ ⊃ ⊥). For a sequence of formulas

Γ = (ϕi)i∈I or a set of formulas Γ, the notation KaΓ stands for the sequence (Kaϕi)i∈I

or the set {Kaϕ | ϕ ∈ Γ} respectively.

We give a proof system of IEC in natural deduction. Most of the rules are common

with intuitionistic propositional logic while some rules are added to define the meaning

of the Ka modality.

Definition 2.3.1. We define the proof system of IEC by Figure 2.1. The system is

presented in the form of usual schemata. A proof diagram is a finite tree of deduction
2In fact, the author considers this as not enough. A proof ϕ ∨ ϕ must contain the choice of the

left ϕ or the right ϕ.

8

(ax)
ϕ ` ϕ

Γ ` ϕ
(w)

ψ, Γ ` ϕ

ϕ, ϕ, Γ ` ϕ′
(c)

ϕ, Γ ` ϕ′
Γ, ϕ, ψ, Γ′ ` ϕ′

(e)
Γ, ψ, ϕ, Γ′ ` ϕ′

Γ ` ϕ ∧ ψ
(∧-E0) Γ ` ϕ

Γ ` ϕ Γ′ ` ψ
(∧-I)

Γ,Γ′ ` ϕ ∧ ψ

Γ ` ϕ ∧ ψ
(∧-E1) Γ ` ψ

Γ ` ϕ
(∨-I0) Γ ` ϕ ∨ ψ

Γ ` ϕ
(∨-I1) Γ ` ψ ∨ ϕ

Γ ` ψ0 ∨ ψ1 Γ, ψ0 ` ϕ Γ, ψ1 ` ϕ
(∨-E)

Γ ` ϕ

ϕ, Γ ` ψ
(⊃-I)

Γ ` ϕ ⊃ ψ

Γ ` ψ0 ⊃ ψ1 Γ ` ψ0(⊃-E)
Γ ` ψ1

Γ ` ⊥(⊥-E)
Γ ` ϕ

Γ ` Kaϕ
(T)

Γ ` ϕ

Γ ` Kaϕ
(ispec)

Γ ` KaKaϕ

Γ ` ϕ
(nec)

KaΓ ` Kaϕ

Γ ` Ka(ϕ ∨ ψ)
(∨K)

Γ ` Kaϕ ∨ Kaψ

Figure 2.1: Deduction rules of IEC. (ax) stands for axiom, (w) for weakening, (c)

for contraction, (e) for exchange, (ispec) for introspection and (nec) for necessitation.

(♦-I) denotes the introduction rule for connective ♦. (♦-E) denotes the elimination

rule for connective ♦.

rules with one bottom node with the following property: when a node has a judgement

above the line, there is a node immediately above it and the above node has the same

judgement below the line.

Rationales for the rules on modalities While the rules (T), (ispec) and (nec) are

admissible in classical epistemic logic, we have an additional rule (∨K) which needs

explanation. In this paragraph, we are going to give a rationale for the rule (∨K)

with the help of BHK-interpretation given in Section 2.2. A proof for the premise of

the rule (∨K) is a construction that witnesses agent a’s acknowledgement of a proof

of ϕ ∨ ψ. Since a proof of ϕ ∨ ψ is either a proof of ϕ or a proof of psi, agent a’s

acknowledge of a proof of ϕ ∨ ψ implies either agent a’s acknowledgement of a proof

of ϕ or agent a’s acknowledgement of a proof of ψ.

Also, we are informally assuming logical omniscience of the agents by rule (nec),

that is, we assume agents have complete command on intuitionistic epistemic logic

so that they acknowledge every formulas deducible from the set of formulas they

acknowledge. We do not try to convince that every conceivable agent has logical

omniscience. We only speculate that agents without logical omniscience are hard to

9

represent in a formal system.

Notational conventions For a set of formula Γ and a formula ϕ, Γ ` ϕ denotes

a relation where there is such a finite sequence Γ0 that Γ0 ` ϕ is deducible and that

Γ0 contains only formulas in Γ.

2.4 Semantics

We define validity of a formula on a state in a model. A model is a Kripke model for

propositional intuitionistic logic equipped with an additional mapping fa : W → W

for each agent a ∈ A where W is the set of possible states. Informally3, the function

fa represents the view of agent a. When the current state is w ∈ W, agent a sees

that the current state is fa(w) ∈ W , in other words, agent a knows everything valid

in fa(w). As a special consequence, agent a knows that agent b sees that the current

state is fb(fa(w)) ∈ W. This model is an abstraction of Herlihy and Shavit’s model of

waitfree computation [19]. See Section 7.1 for details.

Definition 2.4.1. A model 〈W,¹, (fa)a∈A, ρ〉 is a tuple with following properties:

1. 〈W,¹〉 is a partial order,

2. fa : W → W is a function satisfying

(a) (descendance) fa(w) ¹ w,

(b) (idempotency) fa(fa(w)) = fa(w), and

(c) (monotonicity) w ¹ v implies fa(w) ¹ fa(v)

for all v, w ∈ W ,

3. ρ : PV ar → P(W) is a function such that each ρ(P) is upward-closed with respect

to ¹, i.e., w′ º w ∈ ρ(P) implies w′ ∈ ρ(P).

With the informal account in mind, the conditions on fa have rationales: descen-

dance condition says an agent a recognises only truth, idempotency says an agent a

recognises that a recognises something whenever the agent a recognises that thing,

and monotonicity says an agent a does not forget things recognised. Differently from

classical epistemic logic, there is no distinction between global states and local states.

The valuation ρ for propositional variables in PV ar is extended into validity rela-

tion |= for all formulas in Fml.
3This account is informal in that we do not attempt to define the terms “view” and “current

state”.

10

Definition 2.4.2. We define the validity relation |= of a model 〈W,¹, (fa)a∈A, ρ〉,
a state w ∈ W of the model and a formula ϕ. Let us fix a model M = 〈W,¹, (fa)a∈A, ρ〉.
The definition of M,w |= ϕ is inductive on the structure of ϕ.

(Case ϕ = ⊥) M,w |= ⊥ never holds.

(Case ϕ = P) M,w |= P if and only if w ∈ ρ(P).

(Case ϕ = Kaψ) M,w |= Kaψ if and only if M,fa(w) |= ψ.

(Case ϕ = ψ0 ∧ ψ1) M,w |= ψ0 ∧ ψ1 if and only if both M,w |= ψ0 and M,w |= ψ1

hold.

(Case ϕ = ψ0 ∨ ψ1) M,w |= ψ0 ∨ ψ1 if and only if either M,w |= ψ0 or M,w |= ψ1

holds.

(Case ϕ = ψ0 ⊃ ψ1) M,w |= ψ0 ⊃ ψ1 if and only if for any w′ ∈ W with w′ º w,

the validity M,w′ |= ψ0 implies the validity M,w′ |= ψ1.

Next, we show that the restriction on the valuation ρ is preserved by the extension

to validity |=. Informally, this theorem presents the limitation of the logic IEC: it can

only deal with propositions whose validity is preserved by progress with respect to the

partial order ¹ belonging to the model.

Theorem 2.4.3 (Kripke monotonicity). M,w |= ϕ and w ¹ v imply M,v |= ϕ.

Proof. By structural induction on ϕ. We fix a model M and we abbreviate M,w |= ϕ

into w |= ϕ.

(Case ϕ = ⊥) The assumption w |= ⊥ never holds.

(Case ϕ = P) By the restriction on ρ in Definition 2.4.1.

(Case ϕ = Kaψ) By monotonicity of fa and induction hypothesis.

(Case ϕ = ψ0 ∧ ψ1) Assume w |= ψ0 ∧ ψ1. Both w |= ψ0 and w |= ψ1 hold. By

induction hypothesis, v |= ψ0 and v |= ψ1 hold. Thus v |= ψ0 ∧ ψ1 holds.

(Case ϕ = ψ0 ∨ ψ1) Similarly by induction hypothesis.

(Case ϕ = ψ0 ⊃ ψ1) By definition of |=.

11

Semantics of judgements We introduce some notations which look similar to the

judgements appearing in the deduction system. Being aware of the different definitions

of ` and |=, we are going to compare the two relations ` and |= in the next sections.

Notation 2.4.4. For a model M and a state w of the model, we write M,w |= Γ

when the validity M,w |= ϕ holds for any formula ϕ in Γ.

Notation 2.4.5. Γ |= ϕ stands for the relation of formula sequences Γ and a formula

ϕ that holds if and only if for any model M and w ∈ M , M,w |= Γ implies M,w |= ϕ.

Definition 2.4.6. Γ |= ϕ stands for the relation of a set of a formulas Γ and a

formula ϕ where M,w |= Γ implies M,w |= ϕ for any model M and a state w ∈ M .

For a sequence of formulas Γ, we let u(Γ) denote the set of formulas appearing in

Γ. We abbreviate u(Γ) |= ϕ into Γ |= ϕ. We will sometimes write Γ instead of u(Γ)

for the sake of brevity.

Definition 2.4.7. A set of formulas Γ is consistent if and only if Γ 6|= ⊥.

2.5 Soundness

Soundness is the single most important feature of a formal deductive system because

the main reason for using a formal deductive system is it ensures correct reasoning.

We regard the defined semantics as a standard for correct reasoning and show that the

deduction systems of IEC meets that standard. Soundness ensures a formula provable

in IEC is valid in any state of any model. At the same time, we show a stronger

notion: a formula provable under a set of assumptions is always valid whenever the

assumptions are valid.

Theorem 2.5.1 (Soundness). Γ ` ϕ implies Γ |= ϕ.

Proof. We prove soundness with induction on the definition of `. We fix a model M

and we abbreviate M,w |= ϕ into w |= ϕ.

(ax)(w)(c)(e) Trivial.

(⊃-I) Assume Γ, ϕ |= ψ. Assume w |= Γ. Also assume that there is such a state

w′ in M that w′ º w and w′ |= ϕ hold. By Lemma 2.4.3, w′ |= Γ holds. Since

Γ, ϕ |= ψ, the relation Γ, w′ |= ψ holds.

(⊃-E) Assume Γ |= ϕ ⊃ ψ and Γ |= ϕ. By the second assumption, w |= ϕ holds.

The first assumption says w |= ϕ ⊃ ψ. Since w º w, the relation w |= ψ holds.

12

(∧-I)(∨-I0)(∨-I1)(∨-E)(∧-E0)(∧-E1) Trivial.

(T) Assume w |= Γ. By induction hypothesis, the validity w |= Kaϕ holds. By

definition of |=, fa(w) |= ϕ holds. Since fa(w) ¹ w, Lemma 2.4.3 says w |= ϕ.

(inspec) Assume w |= Γ. By induction hypothesis, the validity w |= ϕ holds.

By definition of |=, fa(w) |= ϕ holds. Since fa is idempotent, fa(fa(w)) |= ϕ.

Applying the definition of |= again in the opposite direction, we obtain w |= Kaϕ.

(nec) Assume Γ |= ϕ and w |= KaΓ hold. Since w |= Γ, the first assumption says

w |= ϕ. By definition of |=, the relation w |= Kaϕ holds.

(∨Ka) Assume Γ |= Ka(ϕ ∨ ψ). For any state w of any model M , assume w |=
Ka(ϕ ∨ ψ). By the definition of |=, fa(w) |= ϕ ∨ ψ. Applying the definition of

|= again, either fa(w) |= ϕ or fa(w) |= ψ holds. This implies either w |= Kaϕ or

w |= Kaψ holds. We have w |= Kaϕ ∨ Kaψ.

2.6 Disjunction Property

We modify Aczel’s slash and prove disjunction property. We referred Troelstra and

van Dalen’s textbook [38, 3.5] for the proof of disjunction property of intuitionistic

propositional logic.

The main originality of this section is the following definition of the function fa.

Informally, for a set Γ of formulas, fa(Γ) is agent a’s view of the set Γ.

Definition 2.6.1. For an agent a ∈ A, we define two functions ga, fa : P(Fml) →
P(Fml) as

ga(Γ) = {ϕ ∈ Fml | (Ka)+ϕ ∈ Γ and ϕ does not begin with Ka},

fa(Γ) = ga(Γ) ∪ Kaga(Γ) ∪ {ϕ ∈ Fml | Γ ` ⊥}.

where (Ka)+ denotes a finite repetition of at least one (Ka).

2.6.1 Properties of the Auxiliary Functions

Since the definition for the auxiliary function fa is not very straightforward, it is worth-

while checking some properties of it like monotonicity and idempotency. Actually, in

the next section, a variant of this function fa will be used for constructing a model so

that its monotonicity and idempotency are necessary.

13

Proposition 2.6.2. Γ ⊆ ∆ implies ga(Γ) ⊆ ga(∆).

Proof. By the form of definition of ga in Definition 2.6.1.

Proposition 2.6.3. ga(∆ ∪ Γ) = ga(∆) ∪ ga(Γ).

Proof. By the form of definition of ga in Definition 2.6.1.

Proposition 2.6.4. fa(∆ ∪ Γ) is equal to fa(∆) ∪ fa(Γ) provided ∆ ∪ Γ 6` ⊥.

Proof.

fa(∆ ∪ Γ) = ga(∆ ∪ Γ) ∪ Kaga(∆ ∪ Γ) (definition of fa)

= ga(∆) ∪ ga(Γ) ∪ Kaga(∆) ∪ Kaga(Γ) (Proposition 2.6.3)

= ga(∆) ∪ Kaga(∆) ∪ ga(Γ) ∪ Kaga(Γ) (reordering)

= fa(∆) ∪ fa(Γ) (definition of fa).

Proposition 2.6.5. Γ ⊆ ∆ implies fa(Γ) ⊆ fa(∆).

Proof. If ∆ ` ⊥, fa(Γ) ⊆ Fml = fa(∆). Otherwise, there exists a set Γ′ with

Γ ∪ Γ′ = ∆. Using Proposition 2.6.4 suffices.

Proposition 2.6.6. For any ϕ ∈ Kafa(Γ), Γ ` ϕ holds.

Proof. ϕ = Kaψ where ψ ∈ fa(Γ) = ga(Γ) ∪ Kaga(Γ) ∪ {ϕ ∈ Fml | Γ ` ⊥}.

(Case ψ ∈ ga(Γ)) By definition of ga, (Ka)+ψ ∈ Γ. By rule (T), Γ ` Kaψ. This is

what we sought: Γ ` ϕ.

(Case ψ ∈ Kaga(Γ)) ψ = Kaψ′ where ψ′ ∈ ga(Γ). By the same argument, Γ `
Kaψ′. By rule (inspec), Γ ` KaKaψ′. This is what we sought: Γ ` ϕ.

(Case Γ ` ⊥) By rule (⊥-E), Γ ` ϕ holds.

Proposition 2.6.7. For any ϕ ∈ fa(Γ), Γ ` ϕ holds.

Proof. Kaϕ ∈ Kafa(Γ). By Proposition 2.6.6, Γ ` Kaϕ holds. By rule (T), deducibil-

ity Γ ` ϕ holds.

Proposition 2.6.8. fa(fa(Γ)) = fa(Γ).

14

Proof. If Γ 6` ⊥, by Proposition 2.6.7, fa(Γ) 6` ⊥ also holds.

fa(fa(Γ)) = fa(ga(Γ) ∪ Kaga(Γ)) (definition of fa)

= fa(ga(Γ)) ∪ fa(Kaga(Γ)) (Proposition 2.6.4)

= ∅ ∪ fa(Γ) (definitions of fa and ga)

= fa(Γ).

Otherwise, if Γ ` ⊥, fa(Γ) = Fml = fa(fa(Γ)).

2.6.2 The Slash Relation

We use fa defined above to extend Aczel’s slash relation to the language of IEC. We

add a clause for Ka modalities where we use the function fa.

Definition 2.6.9. We define the slash relation | as follows:

Γ | ⊥ ⇐⇒ Γ ` ⊥,

Γ | P ⇐⇒ Γ ` P,

Γ | Kaϕ ⇐⇒ fa(Γ) | ϕ

Γ | ϕ ∧ ψ ⇐⇒ Γ | ϕ and Γ | ψ,

Γ | ϕ ∨ ψ ⇐⇒ Γ | ϕ or Γ | ψ,

Γ | ϕ ⊃ ψ ⇐⇒ ∆ | ϕ implies ∆ | ψ for any ∆ ⊇ Γ and also Γ ` ϕ ⊃ ψ.

Lemma 2.6.10. Γ | ϕ ⇒ Γ ` ϕ.

Proof. By induction on ϕ.

(Case ϕ = ⊥)(Case ϕ = P) By definition of |.

(Case ϕ = Kaψ) The assumption Γ | Kaψ is equivalent to fa(Γ) | ψ. By induction

hypothesis, fa(Γ) ` ψ. By rule (nec), Kafa(Γ) ` Kaψ. By Proposition 2.6.6,

the deducibility Γ ` Kaψ holds.

(Case ϕ = ψ0 ∧ ψ1) Γ | ψ0 ∧ ψ1. By definition of |, Both Γ | ψ0 and Γ | ψ1 hold.

By induction hypothesis, both Γ ` Kxψ0 and Γ ` Kxψ1 hold. By logic, Γ `
Kx(ψ0 ∧ ψ1) holds.

(Case ϕ = ψ0 ∨ ψ1) Similar to the case above.

(Case ϕ = ψ0 ⊃ ψ1) By definition of |.

15

Lemma 2.6.11. Γ | ϕ and Γ ⊆ ∆ imply ∆ | ϕ.

Proof. By induction on ϕ.

(Case ϕ = ⊥) (Case ϕ = P) (Case ϕ = ψ0 ⊃ ψ1) By definition of the slash rela-

tion |.

(Case ϕ = ψ0 ∧ ψ1) (Case ϕ = ψ0 ∨ ψ1) Directly from induction hypotheses.

(Case ϕ = Kaψ) By Proposition 2.6.5, fa(Γ) ⊆ fa(∆) holds. By induction hypoth-

esis, fa(Γ) | ψ implies fa(∆) | ψ, which is equivalent to ∆ | ϕ holds.

Lemma 2.6.12. For any set Γ of formulas with Γ |ψ for all ψ ∈ Γ, ϕ ∈ ga(Γ) implies

fa(Γ) | ϕ.

Proof. By definition of ga, (Ka)(n)ϕ ∈ Γ for some n ≥ 1, where (Ka)(n) denotes an n-

time repetition of Ka’s. By assumption, Γ | (Ka)(n)ϕ. By definition of |, f
(n)
a (Γ) | ϕ.

Since fa is idempotent (Proposition 2.6.8), fa(Γ) | ϕ.

This definition of hereditary f -closed formulas is original.

Definition 2.6.13. A hereditary f-closed set Γ is coinductively defined as: Γ is a

hereditary f-closed set if and only if fa(Γ) is hereditary f-closed and fa(Γ) ⊆ Γ for all

a ∈ A.

Equivalently, we can define the negation inductively as:

• if fa(Γ) 6⊆ Γ, Γ is not a hereditary f -closed set.

• if Γ is not a hereditary f -closed set, fa(Γ) is not a hereditary f -closed set.

For example, the set Γ = {KbKaKaP} is not hereditary f -closed because fb(Γ) is not

hereditary f -closed. fb(Γ) is not hereditary f -closed because KaP ∈ fa(fb(Γ)) while

KaP /∈ fb(Γ).

Since fa(∅) = ∅ for any a ∈ A, ∅ is a hereditary f -closed set.

Lemma 2.6.14. For any hereditary f-closed set Γ and a formula ϕ, Γ ` ⊥ implies

Γ | ϕ.

Proof. By induction on ϕ.

16

(Case ϕ = ⊥) (Case ϕ = P) Γ ` ϕ implies Γ | ϕ because ϕ is atomic.

(Case ϕ = Kaψ) Since fa(Γ) is also hereditary f -closed and ⊥ infa(Γ), by induction

hypothesis, fa(Γ) | ψ. This is equivalent to Γ | Kaψ.

(Case ϕ = ψ0 ∧ ψ1) (Case ϕ = ψ0 ∨ ψ1) Directly from induction hypothesis.

(Case ϕ = ψ0 ⊃ ψ1) By rule (⊥-E), Γ ` ψ0 ⊃ ψ1. For all ∆ ⊃ Γ, by induction

hypothesis, ∆ | ψ1 holds. These two facts show ∆ | ψ0 ⊃ ψ1.

Lemma 2.6.15. For any hereditary f-closed set Γ of formulas, if Γ |ψ for all ψ ∈ Γ,

fa(Γ) | ϕ for all ϕ ∈ fa(Γ).

Proof. By induction on the structure of ϕ. However, most cases are uniformly treated

in the last clause.

(Case ϕ = Kxψ) Assume Kxψ ∈ fa(Γ) = ga(Γ) ∪ Kaga(Γ) ∪ {θ ∈ Fml | Γ ` ⊥}.

(Case Kxψ ∈ ga(Γ)) By Lemma 2.6.12, fa(Γ) | Kxψ.

(Case Kxψ ∈ Kaga(Γ)) Note x = a. By Lemma 2.6.12, fa(Γ) |ψ holds. Since

fa is idempotent, fa(fa(Γ)) | ψ holds. By definition of |, fa(Γ) | Kaψ.

(Case Γ ` ⊥) fa(Γ) ` ⊥ also holds. By Lemma 2.6.14, fa(Γ) | ϕ holds.

(Other cases) Assume ϕ ∈ fa(Γ) = ga(Γ) ∪ Kaga(Γ) ∪ {θ ∈ Fml | Γ ` ⊥}. If

Γ ` ⊥, by Lemma 2.6.14 and definition of fa, fa(Γ) | ϕ. Otherwise, since the

formula ϕ does not begin with Ka, ϕ ∈ ga(Γ). By Lemma 2.6.12, fa(Γ) | ϕ.

Lemma 2.6.16. Γ | Kaϕ ⇒ Γ | ϕ if Γ is fa-closed.

Proof. Immediate from Lemma 2.6.11.

Lemma 2.6.17. Γ | ψ and Γ ∪ {ψ} | ϕ imply Γ | ϕ.

Proof. By induction on ϕ.

(Case ϕ = ⊥) (Case ϕ = P) Since Γ |ψ, by Lemma 2.6.10, the deducibility Γ ` ψ

holds. Likewise since Γ ∪ {ψ} | ϕ, the deducibility Γ ∪ {ψ} ` ϕ holds. These

combined imply Γ ` ϕ. By definition of the slash relation |, the relation Γ | ϕ
holds because ϕ is atomic.

17

(Case ϕ = ψ0 ∨ ψ1) (Case ϕ = ψ0 ∧ ψ1) Directly from induction hypotheses.

(Case ϕ = Kaθ) Since Γ∪{ψ}|Kaθ, by definition of the slash relation |, fa(Γ∪{ψ})|
θ holds. If Γ∪{ψ} ` ⊥, by the assumption, Γ ` ⊥. Thus, by Lemma 2.6.14, Γ ` ϕ

holds. Otherwise, since fa(Γ∪{ψ}) = fa(Γ)∪fa({ψ}), we have fa(Γ)∪fa({ψ})|θ.
If ψ = Kaψ′, Γ |ψ is equivalent to fa(Γ) |ψ′. By induction hypothesis, fa(Γ) | θ.
This is equivalent to fa(Γ) | Kaθ. This is what we sought: fa(Γ) | ϕ. Otherwise,

if ψ does not begin with Ka, fa({ψ}) = ∅. Thus, fa(Γ) | θ. This means Γ | Kaθ.

(Case ϕ = ψ0 ⊃ ψ1) Since Γ∪{ψ} |ψ0 ⊃ ψ1, by Lemma 2.6.10, Γ∪{ψ} ` ψ0 ⊃ ψ1

holds. In addition to this, ∆ ∪ {ψ} | ψ0 implies ∆ ∪ {ψ} | ψ1 for any ∆ ⊇ Γ. We

claim that ∆ |ψ0 implies ∆ |ψ1 for any ∆ ⊇ Γ. To show that, we assume ∆ |ψ0.

By Lemma 2.6.11, ∆ ∪ {ψ} | ψ0 holds. By assumption, ∆ ∪ {ψ} | ψ1 holds. By

induction hypothesis, ∆ |ψ1 holds. We have shown that ∆ |ψ0 implies ∆ |ψ1. In

addition to this, by Γ ` ψ and Γ ∪ {ψ} ` ψ0 ⊃ ψ1, the deducibility Γ ` ψ0 ⊃ ψ1

holds. The slash relation Γ | ψ0 ⊃ ψ1 has been proved.

Lemma 2.6.18. If Γ and ∆ are provably equivalent and satisfy fa(Γ) = fa(∆) for all

a ∈ A, Γ | ϕ is equivalent to ∆ | ϕ.

Proof. By the form of the definition of the slash relation |.

2.6.3 Disjunction Property

The standard proof for disjunction property is extended to the logic IEC.

Theorem 2.6.19. For any hereditary f-closed set Γ of formulas, if Γ |ϕ holds for any

ϕ ∈ Γ, Γ ` ϕ implies Γ | ϕ.

Proof. By induction on definition of Γ ` ϕ.

(ax) (w) (c) (e) Trivial.

(∧-Ei) (∧-I) (∨-Ii) By definition of the slash relation |.

(∨-E)
Γ ` ψ0 ∨ ψ1 Γ, ψ0 ` ϕ Γ, ψ1 ` ϕ

Γ ` ϕ

By an induction hypothesis, Γ |ψ0∨ψ1 holds. By definition of the slash relation,

either Γ | ψ0 or Γ | ψ1 holds.

18

(Case Γ | ψ0) By another induction hypothesis, Γ∪{ψ0}|ϕ holds. By Lemma 2.6.17,

Γ | ϕ holds.

(Case Γ | ψ1) Similar.

(⊃-I)
ϕ, Γ ` ψ

Γ ` ϕ ⊃ ψ

By induction hypothesis, ϕ ∪ Γ | ψ holds. Thus for any ∆ ⊇ Γ, ϕ ∪ ∆ | ψ holds.

∆ | ϕ implies ∆ | ψ by Lemma 2.6.17. This fact and the deducibility Γ ` ϕ ⊃ ψ

imply Γ | ϕ ⊃ ψ.

(⊃-E)
Γ ` ψ0 ⊃ ψ1 Γ ` ψ0

Γ ` ψ1

By induction hypothesis, Γ | ψ0 ⊃ ψ1 holds. By definition of the slash relation,

Γ | ψ0 implies Γ | ψ1. Actually, Γ | ψ0 holds by an induction hypothesis. Thus,

Γ | ψ1 holds.

(⊥-E) By Lemma 2.6.14.

(T) Kaϕ ` ϕ

Assume Kaϕ ∈ Γ. By assumption of the theorem, Γ | Kaϕ. Since Γ is fa-closed,

by Lemma 2.6.16, Γ | ϕ.

(nec)
∆ ` ϕ

Ka∆ ` Kaϕ

We can assume Ka∆ ⊆ Γ and that ϕ ∈ Γ implies Γ | ϕ. Also, by induction

hypothesis, any Γ′ with ∆ ⊆ Γ′ and ψ ∈ Γ′ ⇒ Γ′ | ψ, Γ′ | ϕ holds. Since ∆ is a

finite sequence, there exists a natural number n with ∆ ⊆ fa(Γ)∪Kafa(Γ)∪· · ·∪
(Ka)(n)fa(Γ). By induction hypothesis, fa(Γ)∪Kafa(Γ)∪ · · · ∪ (Ka)(n)fa(Γ) |ϕ
holds. By Lemma 2.6.18, this is equivalent to fa(Γ) |ϕ. By definition of |, Γ |Kaϕ

holds.

(∨K) Ka(ϕ ∨ ψ) ` (Kaϕ) ∨ Kaψ

19

The proof can be pictorially shown as follows:

Ka(ϕ ∨ ψ) =⇒ Γ | Ka(ϕ ∨ ψ) (assumption)

⇐⇒ fa(Γ) | ϕ ∨ ψ (definition of the slash relation |)

⇐⇒ fa(Γ) | ϕ or fa(Γ) | ψ (definition of the slash relation |)

⇐⇒ Γ | Kaϕ or Γ | Kaψ (definition of the slash relation |)

⇐⇒ Γ | Kaϕ ∨ Kaψ (definition of the slash relation |).

Using the apparatus prepared above, we can finally show disjunction property,

which is the standard for constructive logic.

Theorem 2.6.20 (Disjunction property). If ` ϕ ∨ ψ holds, either ` ϕ or ` ψ holds.

Proof. Taking Γ = ∅ in Theorem 2.6.19, ` ϕ∨ψ implies ∅|ϕ or ∅|ψ. By Lemma 2.6.10,

either ` ϕ or ` ψ holds.

2.7 Strong Completeness and Finite Model Property

In this section, we show strong completeness and finite model property. Since both

proofs contain model construction, most parts of both proofs can be written in the same

lemmas. This utilisation of similarity of finite model property and strong completeness

is originally the idea of Sato [35].

Definition 2.7.1. We modify fa introduced in the last section (Definition 2.6.1) and

define f ′
a as:

f ′
a(Γ) = ga(Γ) ∪ Kaga(Γ).

For some pages, we argue about a set of formula Ω. Later, when we show strong

completeness, we take Ω to be the whole set of well formed formulas. Also, when we

show finite model property, we take Ω to be the set of the subformulas of a certain

formula. This model construction is inspired by Sato’s paper [35] and Troelstra and

van Dalen’s textbook [38]. However, the notion of f ′-subformula-closed sets is new

and original.

Definition 2.7.2. For a set of formulas Ω, a set of formulas Γ ⊆ Ω is Ω-saturated if

and only if

1. Γ is Ω-deductively closed, i.e., Γ ` ϕ ∈ Ω ⇒ ϕ ∈ Γ,

20

2. Γ ` ϕ ∨ ψ ⇒ Γ ` ϕ or Γ ` ψ if ϕ,ψ ∈ Ω,

3. Γ 6` ⊥.

Definition 2.7.3. A hereditary f ′-subformula-closed set Γ is coinductively defined as:

Γ is a hereditary f ′-subformula-closed set if and only if f ′
a(Γ) is hereditary f ′-closed,

Γ is closed for taking subformulas and f ′
a(Γ) ⊆ Γ.

Definition 2.7.4. We define sa(ϕ) inductively on ϕ:

sa(ϕ) =

sa(Kaψ) (if ϕ = KaKaψ),

ϕ (otherwise).

The function sa replaces every KaKa with Ka repeatedly so that there are no KaKa

occurrences left.

Lemma 2.7.5. For a hereditary f ′-subformula-closed set Ω, if Γ is an Ω-saturated

set, fa(Γ) is an f ′
a(Ω)-saturated set.

Proof. We first make sure that fa(Γ) is a subset of f ′
a(Ω). By definition of fa, fa(Γ) =

ga(Γ) ∪ Kaga(Γ) ∪ {⊥ ∈ Fml | Γ ` ⊥}. Since Γ is an Ω-saturated set, Γ 6` ⊥ so

that fa(Γ) = ga(Γ) ∪ Kaga(Γ). On the other hand, f ′
a(Ω) = ga(Ω) ∪ Kaga(Ω). Since

ga(Γ) ⊆ ga(Ω) by Proposition 2.6.2, fa(Γ) ⊆ f ′
a(Ω) holds.

We check each condition of Definition 2.7.2 to make sure that fa(Γ) is actually

an f ′
a(Ω)-saturated set.

1. Assume fa(Γ) ` ϕ and ϕ ∈ f ′
a(Ω). ϕ ∈ ga(Ω) ∪ Kaga(Ω) holds.

(Case ϕ ∈ ga(Ω)) Note that ϕ does not begin with Ka. By definition of ga,

(Ka)+ϕ ∈ Ω. Since Ω is subformula-closed, Kaϕ ∈ Ω holds. By Γ ` Kaϕ,

since Γ is Ω-saturated, Kaϕ ∈ Γ. Thus, ϕ ∈ fa(Γ).

(Case ϕ ∈ Kaga(Ω)) ϕ = Kaϕ′ and ϕ′ ∈ ga(Ω) hold. Note that ϕ′ does not

begin with Ka. By definition of ga, (Ka)+ϕ′ ∈ Ω. This implies Kaϕ′ ∈ Ω.

Since Γ ` KaKaϕ′, Γ ` Kaϕ′ holds. Thus, since Γ is Ω-saturated, Kaϕ′ ∈ Γ

holds. This means ϕ = Kaϕ′ ∈ fa(Γ).

2. Assume fa(Γ) ` ϕ ∨ ψ and ϕ, ψ ∈ f ′
a(Ω). By rule (nec), Kafa(Γ) ` Ka(ϕ ∨ ψ)

holds. By Proposition 2.6.6, the formulas in Kafa(Γ) are deducible from Γ.

Thus, Γ ` Ka(ϕ ∨ ψ) holds. By rule (∨K) and the fact that Γ is saturated,

either Kasa(ϕ) ∈ Γ or Kasa(ψ) ∈ Γ holds. We can assume Kasa(ϕ) ∈ Γ without

loss of generality. This implies fa(Γ) ` ϕ and then ϕ ∈ fa(Γ).

21

3. Seeking contradiction, assume fa(Γ) ` ⊥. Since Γ ` Ka⊥, the deducibility Γ ` ⊥
holds, which contradicts the fact that Γ is an Ω-saturated set.

Lemma 2.7.6 (Saturation lemma). For sets of formulas Γ and Ω with Γ 6` ϕ, Γ ⊆ Ω

and ϕ ∈ Ω, there exists an Ω-saturated set Γω with Γω 6` ϕ and Γ ⊆ Γω.

Proof. Since both PV ar and A are countable, we can enumerate all formulas of Ω in

a sequence (ϕi)i∈N+ . We define Γi inductively:

(Case i = 0) Γ0 = Γ,

(Case i > 0) Γi =


{ϕi} ∪ Γi−1 (if {ϕi} ∪ Γi−1 6` ϕ),

Γi = Γi−1 ∪ {ϕi ⊃ ϕ} (otherwise if ϕi ⊃ ϕ ∈ Ω),

Γi = Γi−1 (otherwise).

Using these Γi, we define Γω =
⋃

i∈ω Γi.

Claim: Γω 6` ϕ. Seeking contradiction, assume a deducibility Γω ` ϕ. Since only finite

number of formulas in Γ are used to prove ϕ, there exists a minimal i with Γi ` ϕ. Since

Γ 6` ϕ, i is not 0. Since Γi 6= Γi−1, either Γi = {ϕi} ∪ Γi−1 or Γi = {ϕi ⊃ ϕ} ∪ Γi−1

holds. The first case is explicitly forbidden. In the second case, Γi−1, ϕi ⊃ ϕ ` ϕ

holds. That means Γi−1 ` (ϕi ⊃ ϕ) ⊃ ϕ. Also, since we could not take the first case,

Γi−1, ϕi ` ϕ holds. That means Γi−1 ` ϕi ⊃ ϕ. By these combined, Γi−1 ` ϕ holds,

which contradicts to the minimality of i. The claim is now proved.

Claim: Γω is an Ω-saturated set.

Proof of Claim. We check each condition listed in Definition 2.7.2:

1. Assume Γω ` ψ ∈ Ω. There is i ∈ N+ with ϕi = ψ. We know that Γi−1 ∪ {ϕi} 6`
ϕ. It means ψ ∈ Γω.

2. Assume ψ0 ∨ ψ1 ∈ Γω and ψ0, ψ1 ∈ Ω. Seeking contradiction, assume ψ0 /∈ Γω

and ψ1 /∈ Γω. By construction, both Γω ` ψ0 ⊃ ϕ and Γω ` ψ1 ⊃ ϕ hold. Since

Γω is deductively closed, by (∨-E) rule, we have Γω ` ϕ, which contradicts to

the previous fact.

3. Since Γω 6` ϕ, by rule (⊥-E), Γω 6` ⊥.

Since Γ0 = Γ, Γω contains Γ. The lemma is now proved.

22

Definition 2.7.7 (Canonical model candidate). For a sset of formulas Ω, we define

Mc(Ω) as a tuple 〈W c,¹c, (fc
a)a∈A, ρc〉 where:

• W c is the set of pairs of the form (Ω′, Γ) where Γ is an Ω′-saturated set and Ω′

is a hereditary f ′-subformula-closed subset of Ω.

• (Ω′,Γ) ¹c (Ω′′, ∆) if and only if Ω′ ⊆ Ω′′ and Γ ⊆ ∆,

• fc
a ((Ω′, Γ)) = (f ′

a(Ω), fa(Γ))

• ρc(P) = {(Ω′, Γ) ∈ W c | P ∈ Γ}.

Lemma 2.7.8 (Canonical model). The tuple Mc is a model.

Proof. First of all, fc
a is actually a function W c → W c by Lemma 2.7.5. We check

each condition in Definition 2.4.1 to make sure the tuple is actually a model:

1. ¹c is a partial order because set theoretic inclusion ⊆ is a partial order.

2. (a) fc
a ((Ω′, Γ)) = (f ′

a(Ω′), fa(Γ)). Since Ω′ is hereditary f ′-subset-closed, f ′
a(Ω′) ⊆

Ω′ holds. Now, showing Γ ⊆ fa(Γ) is enough. Take an arbitrary ϕ ∈ fa(Γ).

Since Γ 6` ⊥, either ϕ ∈ ga(Γ) or ϕ ∈ Kaga(Γ) holds. In either case,

(Ka)∗ϕ ∈ Γ holds. That means Γ ` ϕ. Since ϕ ∈ Ω′, ϕ ∈ Γ holds. Thus we

have shown Γ ⊆ fa(Γ). This completes the proof of fc
a ((Ω′, Γ)) ¹c (Ω′,Γ).

(b) By Lemma 2.6.8, fa(fa(Γ)) = fa(Γ) holds. Similar argument gives f ′
a(f ′

a(Ω′)) =

f ′
a(Ω′). These combined imply that fc

a is idempotent.

(c) Both fa and f ′
a are monotonic with respect to set theoretic inclusion. This

implies that fc
a is monotonic with respect to ¹c.

3. Immediate.

Lemma 2.7.9. For a state (Ω′, Γ) ∈ W c in the canonical model Mc and ϕ ∈ Ω′, ϕ

is an element of Γ if and only if Mc,(Ω′,Γ) |= ϕ holds.

Proof. By induction on ϕ.

(Case ϕ = ⊥) Neither side ever holds because Γ is Ω′-saturated.

(Case ϕ = P) By definition of ρc and |=, the equivalency ϕ ∈ Γ ⇔ (Ω′,Γ) ∈ ρ(P) ⇔
Mc, (Ω,Γ) |= P holds.

(Case ϕ = ψ0 ∧ ψ1)(Case ϕ = ψ0 ∨ ψ1) Directly from the induction hypothesis.

23

(Case ϕ = Kaψ) (⇒) Assume Mc(Ω), (Ω′, Γ) |= Kaψ. By definition of |= and in-

duction hypothesis, ψ ∈ fa(Γ) = ga(Γ) ∪ Kaga(Γ). If ψ ∈ ga(Γ), (Ka)+ψ ∈ Γ

holds. This means Γ ` Kaψ. Otherwise, if ψ ∈ Kaga(Γ), ψ = Kaψ′ where

ψ′ ∈ ga(Γ). This means Γ ` Kaψ′ and consequently Γ ` Kaψ. In either case

Γ ` Kaψ holds. Also by the assumption of the lemma, Kaψ ∈ Ω′. These imply

Kaψ ∈ Γ because Γ is an Ω′-saturated set.

(⇐) Assume Ka ∈ Γ. There exists ψ′ that does not begin with Ka such that

ψ = (Ka)∗ψ′. By definition of fa, ψ′ ∈ fa(Γ). By induction hypothesis,

(f ′
a(Ω′), fa(Γ)) |= ψ′. This is equivalent to Mc(Ω), (Ω′, Γ) |= Kaψ′. Since fc

a

is idempotent, Mc(Ω), (Ω′, Γ) |= Kaψ.

(Case ϕ = ψ0 ⊃ ψ1) (⇒) Assume Mc(Ω), (Ω′, Γ) |= ψ0 ⊃ ψ1. Seeking contradic-

tion, assume ψ0 ⊃ ψ1 /∈ Γ. Since Γ is deductively closed, Γ ∪ {ψ0} 6` ψ1. By

Lemma 2.7.6, there exists an Ω′-saturated set Γ′ with Γ′ ⊇ Γ∪{ψ0} and Γ′ 6` ψ1.

By induction hypothesis, Mc(Ω), (Ω′, Γ′) |= ψ0 but not Mc(Ω), (Ω′, Γ′) |= ψ1.

Since (Ω′, Γ′) º (Ω′, Γ), this contradicts to Mc(Ω), Γ |= ψ0 ⊃ ψ1.

(⇐) For an Ω′-saturated set Γ, assume ψ0 ⊃ ψ1 ∈ Γ. Take a state (Ω′′, ∆) with

(Ω′,Γ) ¹c (Ω′′, ∆) and Mc(Ω), (Ω′′, ∆) |= ψ0. Showing Mc(Ω), (Ω′′, ∆) |= ψ1 is

enough. By induction hypothesis, ψ0 ∈ ∆. Since ψ0 ⊃ ψ1 ∈ Γ ⊆ ∆ and ∆ is

an Ω′′-saturated set, ψ1 ∈ ∆. By induction hypothesis, Mc(Ω), (Ω′′, ∆) |= ψ1

holds.

Now we have shown the lemma.

2.7.1 Strong Completeness

Theorem 2.7.10 (Strong completeness). Γ |= ϕ implies Γ ` ϕ.

Proof. We show the contraposition: assuming Γ 6` ϕ, we show Γ 6|= ϕ. By Lemma 2.7.6,

there is a saturated set of formula Γ′ with Γ′ 6` ϕ and Γ′ ⊇ Γ. By Lemma 2.7.9,

Mc(Fml), (Fml, Γ′) |= Γ but not Mc(Fml), (Fml,Γ′) |= ϕ. This denies Γ |= ϕ.

Corollary 2.7.11 (Compactness). If any finite subset Γ0 of Γ is consistent, Γ is

consistent.

Proof. For any finite subset Γ0, Γ0 ` ⊥ does not hold. Thus, Γ ` ⊥ does not hold. By

strong completeness (Theorem 2.7.10), Γ is consistent.

24

2.7.2 Finite Model Property

Definition 2.7.12. We define the length of a formula ϕ inductively on ϕ:

len(⊥) = len(P) = 1,

len(Kaϕ) = len(ϕ) + 1,

len(ϕ ∧ ψ) = len(ϕ ∨ ψ) = len(ϕ ⊃ ψ) = len(ϕ) + len(ψ) + 1.

Notation 2.7.13. We denote a set of formulas which only contain the propositional

variables in V ⊆ PV ar as FmlV .

Lemma 2.7.14. For a set of propositional variables V ⊆ Fml, the length-limited set

of formulas Γn = {ϕ ∈ FmlV | len(ϕ) ≤ n} is hereditary f ′-subformula-closed.

Proof. By induction on n, we show a stronger proposition: both Γn and Γn ∪ KaΓn

are hereditary f ′-subformula-closed for any a ∈ A.

(Case n = 0) Since Γ0 = ∅, Γ0 ∪ KaΓ0 = ∅. Both are hereditary f ′-subformula-

closed.

(Case n = n0 + 1) By definition of Γn and the definition of subformula, Γn is

subformula-closed set. For any a ∈ A, since ga(Γn) = Γn0 , f ′
a(Γ) = Γn0 ∪

KaΓn0 ⊆ Γn holds. Thus, by induction hypothesis, f ′
a(Γ) is a hereditary f ′-

subformula-closed set. These facts imply Γn is a hereditary f ′-subformula-closed

set.

We also show Γn∪KbΓn is a hereditary f ′-subformula-closed set. Since Γn∪KbΓn

is subformula-closed, we only have to check that f ′
c(Γn∪KbΓn) is f ′-subformula-

closed.

(Case c 6= b) f ′
c(Γn ∪ KbΓn) = f ′

c(Γn), which is shown to be a hereditary

f ′-subformula-closed set.

(Case c = b) f ′
c(Γn ∪ KbΓn) = f ′

c(f
′
c(Γn)) = f ′

c(Γn), which is shown to be a

hereditary f ′-subformula-closed set.

Theorem 2.7.15 (Finite model property). If ϕ is not a theorem of IEC, there is a

finite model M with M 6|= ϕ.

Proof. Since a formula ϕ is finitary, it contains only a finite number of proposi-

tional variables. Let V be the set of propositional variables occurring in ϕ. The

25

set Ω = {ψ ∈ FmlV | len(ψ) ≤ len(ϕ)} is finite and hereditary f ′-subformula-closed

by Lemma 2.7.14. By Lemma 2.7.6, there exist an Ω-saturated set Γ with ϕ /∈ Γ.

By Lemma 2.7.9, Mc(Ω), (Ω, Γ) 6|= ϕ. Since Ω is finite, the model Mc(Ω) is finite. In

fact, the number of the states of Mc(Ω) is at most 4|Ω|.

Theorem 2.7.16. It is decidable whether a formula ϕ is a theorem of IEC or not.

Proof. Since IEC is finitely axiomatisable and has finite model property, by Harrop’s

Theorem [17], the set of theorems of IEC is recursively decidable.

2.8 Adding Double Negation Elimination

A simple way to obtain a classical modal logic from IEC adding a deduction rule called

double negation elimination (in short DN).

Γ `S4∗···∗S4 ¬¬ϕ
(DN)

Γ `S4∗···∗S4 ϕ
.

However, adding this rule makes the modalities meaningless because both ϕ ⊃ Kaϕ

and Kaϕ ⊃ ϕ would become theorems as shown in Figure 2.2. We speculate that

even with double negation elimination, missing substructural rules such as weakeining

regains the meaning of the modality Ka.

Theorem 2.8.1. IEC + (DN) ` Kaϕ ⊃ ϕ.

Proof. See Figure 2.2.

2.9 Conservativity over the Fragment without Disjunction

We give a validity preserving translation from the classical modal logic multiple S4

modalities to IEC. The translation is into the disjunction-less fragment of IEC.

We use conservativity to show the validity preservation of the translation. Since the

disjunction-less fragment of IEC does not have (∨K) rule, using conservativity for

this fragment simplifies the task.

We consider a fragment IECf where ∨ is missing. The aim of this section is to

prove the conservativity.

We prove conservativity through completeness of IECf and soundness of IEC for

the same semantics.

26

(a
x
)

¬
(ϕ

∨
¬

ϕ
)
`

¬
(ϕ

∨
¬

ϕ
)

(a
x
)

ϕ
`

ϕ
(∨

-I
0
)

ϕ
`

ϕ
∨

¬
ϕ

(⊃
-E

)
¬

(ϕ
∨

¬
ϕ
),

ϕ
`

⊥
(⊃

-I
)

¬
(ϕ

∨
¬

ϕ
)
`

¬
ϕ

(∨
-I

1
)

¬
(ϕ

∨
¬

ϕ
)
`

ϕ
∨

¬
ϕ

(a
x
)

¬
(ϕ

∨
¬

ϕ
)
`

¬
(ϕ

∨
¬

ϕ
)

(⊃
-E

)
`

¬
¬

(ϕ
∨

¬
ϕ
)

(D
N

)
`

ϕ
∨

¬
ϕ

(n
e
c
)

`
K

a
(ϕ

∨
¬

ϕ
)

(∨
K

)
`

K
a

ϕ
∨

K
a
¬

ϕ

(a
x
)

K
a

ϕ
`

K
a

ϕ
(w

)
K

a
ϕ

,
ϕ

`
K

a
ϕ

(a
x
)

K
a
¬

ϕ
`

K
a
¬

ϕ
(T

)
K

a
¬

ϕ
`

¬
ϕ

(a
x
)

ϕ
`

ϕ
(⊃

-E
)

K
a
¬

ϕ
,

ϕ
`

⊥
(⊥

-E
)

K
a
¬

ϕ
,

ϕ
`

K
a

ϕ
(∨

-E
)

ϕ
`

K
a

ϕ
(⊃

-I
)

`
ϕ

⊃
K

a
ϕ

F
ig

ur
e

2.
2:

A
dd

in
g

a
cl

as
si

ca
l
pr

in
ci

pl
e

ca
lle

d
do

ub
le

ne
ga

ti
on

el
im

in
at

io
n

de
st

ro
ys

th
e

m
ea

ni
ng

of
m

od
al

it
ie

s.
N

ot
e

th
at

w
ea

ke
ni

ng
is

us
ed

in
th

e
pr

oo
f.

27

Theorem 2.9.1 (Completeness of ∨-less fragment). For a ∨-less formula ϕ and a set

of ∨-less formulas Γ, the relation Γ |= ϕ implies the deducibility Γ f̀ ϕ.

Proof deferred.

Theorem 2.9.2 (Conservativity). For a ∨-less formula ϕ and a set of ∨-less formulas

Γ, Γ ` ϕ ⇒ Γ f̀ ϕ.

Proof of Theorem 2.9.2. By soundness for IEC (Theorem ??), Γ ` ϕ implies Γ |= ϕ.

By strong completeness for IECf (Theorem 2.9.1), Γ |= ϕ implies Γ f̀ ϕ. The theorem

is proved by combining these two implication.

Definition 2.9.3. A set of formulas Γ is ∨less-saturated if and only if

1. Γ is deductively closed, i.e., Γ f̀ ϕ ⇒ ϕ ∈ Γ, and

2. Γ 6 f̀ ⊥.

Lemma 2.9.4 (∨less-saturation lemma). For a set of formulas Γ with Γ 6 f̀ ϕ, there

exists a ∨less-saturated set Γω of formulas with Γω 6 f̀ ϕ and Γ ⊆ Γω.

Proof. We can enumerate all formulas in a sequence (ϕi)i∈N+ . We define Γi induc-

tively:

(Case i = 0) Γ0 = Γ,

(Case i > 0) Γi =

{ϕi} ∪ Γi−1 if {ϕi} ∪ Γi−1 6 f̀ ϕ

Γi−1 ∪ {ϕi ⊃ ϕ} otherwise.

Claim: Γω 6 f̀ ϕ.

Proof of Claim. Seeking contradiction, assume Γω
f̀ ϕ. Since only finite number of

formulas in Γ are used to prove ϕ, there exists a minimal i with Γi
f̀ ϕ. Since Γ 6 f̀ ϕ,

i 6= 0. Either Γi = {ϕi} ∪ Γi−1 or Γi = {ϕi ⊃ ϕ} ∪ Γi−1. The first case is explicitly

forbidden. In the second case, Γi−1 ∪ {ϕi ⊃ ϕ} f̀ ϕ holds. That means Γi−1
f̀ (ϕi ⊃

ϕ) ⊃ ϕ. Also, since we could not take the first case, Γi−1 ∪ {ϕi} f̀ ϕ holds. That

means Γi−1
f̀ ϕi ⊃ ϕ. These combined, Γi−1

f̀ ϕ holds, which contradicts to the

minimality of i.

Claim: Γω =
⋃

i∈ω Γi is a saturated set.

Proof of the claim. 1. Assume Γω ` ψ. There is i ∈ N+ with ϕi = ψ. By the

previous claim, we know that Γi−1 ∪ {ϕi} 6` ϕ. It means ψ ∈ Γω.

28

2. Since Γω 6` ϕ, Γω 6` ⊥.

The lemma is now proved.

Definition 2.9.5 (Canonical model candidate for disjunction-less fragment). Mn =

〈Wn,¹n, (fn
a)a∈A, ρn〉 where:

• Wn is the set of ∨-less saturated sets of formulas,

• Γ ¹n ∆ if and only if Γ ⊆ ∆,

• fn
a (Γ) = {ϕ | Kaϕ ∈ Γ},

• ρn(P) = {Γ | P ∈ Γ}.

Lemma 2.9.6 (Canonical model for ∨-less fragment). The tuple Mn = 〈W c,¹c, (fc
a)a∈A, ρc〉

is a model.

Proof. First, let us check fn
a is actually a function Wn → Wn. Assume Γ ∈ Wn.

Claim: fa(Γ) is a ∨less-saturated set of formulas. To prove the claim, we check each

condition on the definition of saturated sets.

1. Assume fn
a (Γ) ` ϕ. Since there is (nec) rule, Ka(fa(Γ)) f̀ Kaϕ. Since

Ka(fn
a (Γ)) ⊆ Γ, the relation Γ f̀ Kaϕ holds. Since Γ is deductively closed,

Kaϕ ∈ Γ. By definition of fn
a , ϕ ∈ fn

a (Γ).

2. Seeking contradiction, assume fn
a (Γ) f̀ ⊥. Since fn

a (Γ) is deductively closed,

⊥ ∈ fn
a (Γ). By definition of fn

a , Ka⊥ ∈ Γ. Because of the rule (T), Γ f̀ ⊥.

This contradicts to the assumption of Γ being a ∨less-saturated set.

Now, let us check each condition in Definition 2.4.1 in order to see that the tuple is

actually a model.

1. ¹n is a partial order because set theoretic inclusion ⊆ is a partial order.

2. (a) fn
a (Γ) ¹ Γ of the rule (T).

(b) fn
a (fn

a (Γ)) ⊆ fn
a (Γ) is now obvious from the previous line. Let us show the

opposite. Assume ϕ ∈ fn
a (Γ). By definition of fn

a , Kaϕ ∈ Γ. By the rule

(introspection), Γ f̀ KaKaϕ. Since Γ is deductively closed, KaKaϕ ∈ Γ.

Thus ϕ ∈ fn
a (fn

a (Γ)).

(c) Assume Γ ¹ ∆. Every Kaϕ ∈ ∆ is also in Γ. Thus fn
a (Γ) ¹ fn

a (∆).

29

3. Assume Γ′ º Γ ∈ ρn(P). P ∈ Γ. So P ∈ Γ′. Thus Γ′ ∈ ρn(P).

Lemma 2.9.7. For a ∨less-saturated set of formula Γ and the canonical model Mn,

an equivalency ϕ ∈ Γ ⇔ Mn, Γ |= ϕ holds.

Proof. By induction on ϕ.

(Case ϕ = ⊥) Neither side ever holds.

(Case ϕ = P) By definition of ρn, ϕ ∈ Γ ⇐⇒ Γ ∈ ρ(P) ⇐⇒ Mn, Γ |= P .

(Case ϕ = ψ0 ∧ ψ1) (Case ϕ = ψ0 ∨ ψ1) Directly from the induction hypothesis.

(Case ϕ = Kaψ) (⇒) Assume Mn,Γ |= Kaψ. By definition of |=, Mn, fn
a (Γ) |= ψ.

By induction hypothesis, ψ ∈ fn
a (Γ). By definition of fn

a , Kaψ ∈ Γ.

(⇐) Assume Kaψ ∈ Γ. By definition of fn
a , ψ ∈ fn

a (Γ). By induction hypothesis,

fn
a (Γ) |= ψ. By definition of |=, Γ |= Kaψ.

(Case ϕ = ψ0 ⊃ ψ1) (⇒) Assume Mn, Γ |= ψ0 ⊃ ψ1. Seeking contradiction, assume

ψ0 ⊃ ψ1 /∈ Γ. Since Γ is deductively closed, Γ, ψ0 6 f̀ ψ1. By Lemma 2.9.4, there

exists a ∨-less saturated set Γ′ with Γ′ ⊇ Γ ∪ {ψ0} and Γ′ 6 f̀ ψ1. By induction

hypothesis, Mn,Γ′ |= ψ0 but not Mn,Γ′ |= ψ1. Since Γ′ º Γ, this contradicts

to Mn, Γ |= ψ0 ⊃ ψ1.

(⇐) Assume ψ0 ⊃ ψ1 ∈ ∆, ∆′ º ∆ and Mn, ∆′ |= ψ0. Showing Mn, ∆′ |= ψ1 is

enough. By induction hypothesis, ψ0 ∈ ∆′. Since ∆′ is deductively closed and

ψ0 ⊃ ψ1 ∈ ∆′, ψ1 ∈ ∆′. By induction hypothesis, Mn, ∆′ |= ψ1.

Now we have shown the lemma.

We can prove strong completeness for IECf (Theorem 2.9.1) at last.

Proof of Theorem 2.9.1. We show the contraposition: assuming Γ 6 f̀ ϕ, we show Γ 6|=
ϕ. By Lemma 2.9.4, there is a ∨less-saturated set of formula Γ′ with Γ′ 6 f̀ ϕ and

Γ′ ⊇ Γ. By Lemma 2.9.7, Mn, Γ′ |= Γ but not Mn, Γ′ |= ϕ. This denies Γ |= ϕ.

30

2.10 Formula Translation from Classical S4

Although simply adding the double negation eliminiation makes IECdegenerate into

classical propositional logic, there is a connection between classical modal logic S4 and

IEC. In this section, we show a connection between classical multi modal S4 logc and

IECby extending Gödel translation of classical propositional logic into intuitionistic

propositional logic.

S4 ∗ · · · ∗ S4 has the same formulas as IEC. S4 ∗ · · · ∗ S4 has all rules of IEC

except (∨K) and a new rule (DN):

Γ `S4∗···∗S4 ¬¬ϕ
(DN)

Γ `S4∗···∗S4 ϕ
.

We use Gödel translation to translate classical epistemic formula into IECf for-

mula.

Definition 2.10.1. We define the extended Gödel translation 〈·〉 : Fml → Fml in-

ductively on the definition of Fml:

〈⊥〉 = ⊥,

〈P 〉 = ¬¬P,

〈Kaϕ〉 = ¬¬Ka 〈ϕ〉 ,

〈ϕ ∧ ψ〉 = 〈ϕ〉 ∧ 〈ψ〉 ,

〈ϕ ∨ ψ〉 = ¬(¬ 〈ϕ〉 ∧ ¬ 〈ψ〉),

〈ϕ ⊃ ψ〉 = 〈ϕ〉 ⊃ 〈ψ〉 .

Lemma 2.10.2. `S4∗···∗S4 ϕ ↔ 〈ϕ〉.

Proof. Induction on ϕ. This is easily shown using (DN) rules.

Lemma 2.10.3. f̀ (¬¬ 〈ϕ〉) ⊃ 〈ϕ〉.

Proof. Induction on ϕ.

(Case ϕ = ⊥) 〈ϕ〉 = ⊥.

(ax) ¬¬⊥ f̀ ¬¬⊥

(ax) ⊥ ` ⊥(⊃-I) ` ¬⊥
(⊃-E) ¬¬⊥ ` ⊥(⊃-I)

f̀ (¬¬⊥) ⊃ ⊥

31

(Case ϕ = P) 〈ϕ〉 = ¬¬P .

(ax) ¬¬¬¬P f̀ ¬¬¬¬P

(ax) ¬P f̀ ¬P
(ax) ¬¬P f̀ ¬¬P

(⊃-E) ¬P,¬¬P f̀ ⊥(⊃-I) ¬P f̀ ¬¬¬P
(⊃-E) ¬¬¬¬P,¬P f̀ ⊥(⊃-I) ¬¬¬¬P f̀ ¬¬P

(⊃-I)
f̀ ¬¬¬¬P ⊃ ¬¬P

(Case ϕ = ψ0 ∧ ψ1) Figure 2.3 Part A.

(Case ϕ = ψ0 ∨ ψ1) 〈ϕ〉 = ¬(¬ 〈ψ0〉 ∧ ¬ 〈ψ1〉). Figure 2.3 Part B.

(Case ϕ = ψ0 ⊃ ψ1) Figure 2.3 Part C.

(Case ϕ = Kxψ) 〈ϕ〉 = ¬¬Kx 〈ψ〉. Similar to ∨ case.

Theorem 2.10.4 (Translation). Γ `S4∗···∗S4 ϕ ⇔ 〈Γ〉 f̀ 〈ϕ〉.

Proof. (⇐) Since `S4∗···∗S4 has all deduction rules of f̀ , 〈Γ〉 f̀ 〈ϕ〉 implies 〈Γ〉 `S4∗···∗S4

〈ϕ〉. By Lemma 2.10.2, this implies Γ `S4∗···∗S4 ϕ.

(⇒) Induction on the definition of `S4∗···∗S4.

(DN) Assume 〈Γ〉 f̀ 〈¬¬ϕ〉. By Lemma 2.10.3, 〈Γ〉 f̀ 〈ϕ〉 holds.

(∨-I0) Assuming 〈Γ〉 f̀ 〈ϕ〉, showing 〈Γ〉 f̀ ¬ (¬ 〈ϕ〉 ∧ ¬ 〈ψ〉) is enough.

I.H.
〈Γ〉 f̀ 〈ϕ〉

(ax)
¬ 〈ϕ〉 ∧ ¬ 〈ψ〉 f̀ ¬ 〈ϕ〉 ∧ ¬ 〈ψ〉

(∧-E0) ¬ 〈ϕ〉 ∧ ¬ 〈ψ〉 f̀ ¬ 〈ϕ〉
(⊃-E)

〈Γ〉 ,¬ 〈ϕ〉 ∧ ¬ 〈ψ〉 f̀ ⊥(⊃-I)
〈Γ〉 f̀ ¬ (¬ 〈ϕ〉 ∧ ¬ 〈ψ〉)

(∨-I1) Similar to (∨-I0).

(∨-E) Assume 〈Γ〉 f̀ 〈ψ0 ∨ ψ1〉, 〈Γ〉 , 〈ψ0〉 f̀ 〈ϕ〉 and 〈Γ〉 , 〈ψ1〉 f̀ 〈ϕ〉. The first

assumption is equivalent to 〈Γ〉 f̀ ¬(¬ 〈ψ0〉 ∧ ¬ 〈ψ1〉). See Figure 2.10.

(∧-I)(∧-E0)(∧-E1)(⊃-I)(⊃-E)(⊥-E)(T)(introspection)(nec) Trivial.

32

P
ar

t
A

I.
H

.

f̀
¬
¬

〈ψ
0
〉

⊃
〈ψ

0
〉

(a
x
)

¬
〈ψ

0
〉

f̀
¬

〈ψ
0
〉

(a
x
)

〈ψ
0
〉
∧

〈ψ
1
〉

f̀
〈ψ

0
〉
∧

〈ψ
1
〉

(∧
-E

0
)

〈ψ
0
〉
∧

〈ψ
1
〉

f̀
〈ψ

0
〉

(⊃
-E

)
¬

〈ψ
0
〉

,
〈ψ

0
〉
∧

〈ψ
1
〉

f̀
⊥

(⊃
-I

)
¬

〈ψ
0
〉

f̀
¬
(〈

ψ
0
〉
∧

〈ψ
1
〉)

(a
x
)

¬
¬

(〈
ψ
0
〉
∧

〈ψ
1
〉)

f̀
¬
¬

(〈
ψ
0
〉
∧

〈ψ
1
〉)

(⊃
-E

)
¬

〈ψ
0
〉

,
¬
¬

(〈
ψ
0
〉
∧

〈ψ
1
〉)

f̀
⊥

(⊃
-I

)
¬
¬

(〈
ψ
0
〉
∧

〈ψ
1
〉

f̀
¬
¬

〈ψ
0
〉)

(⊃
-E

)
¬
¬

(〈
ψ
0
〉
∧

〈ψ
1
〉)

f̀
〈ψ

0
〉

. . .
(s

a
m

e
a
s

le
ft

)

¬
¬

(〈
ψ
0
〉
∧

〈ψ
1
〉)

f̀
〈ψ

1
〉

(∧
-I

)
¬
¬

(〈
ψ
0
〉
∧

〈ψ
1
〉)

f̀
〈ψ

0
〉
∧

〈ψ
1
〉

(⊃
-I

)
f̀

¬
¬

(〈
ψ
0
〉
∧

〈ψ
1
〉)

⊃
(〈

ψ
0
〉
∧

〈ψ
1
〉)

P
ar

t
B

(a
x)

¬¬
¬(

¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

(a
x)

¬(
¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

f̀
¬(

¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

(a
x)

¬
〈ψ

0
〉∧

¬
〈ψ

1
〉

f̀
¬
〈ψ

0
〉∧

¬
〈ψ

1
〉

(⊃
-E

)
¬
〈ψ

0
〉∧

¬
〈ψ

1
〉,
¬

(¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

f̀
⊥

(⊃
-I

)
¬
〈ψ

0
〉∧

¬
〈ψ

1
〉`

¬¬
(¬

〈ψ
0
〉∧

¬
〈ψ

1
〉)

(⊃
-E

)
¬¬

¬(
¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

,¬
〈ψ

0
〉∧

¬
〈ψ

1
〉

f̀
⊥

(⊃
-I

)
¬¬

¬(
¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

f̀
¬

(¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

(⊃
-I

)
f̀
¬¬

¬(
¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

⊃
¬

(¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

P
ar

t
C

I.
H

.

f̀
¬
¬

〈ψ
1
〉

⊃
〈ψ

1
〉

(a
x
)

¬
¬

(〈
ψ
0
〉

⊃
〈ψ

1
〉)

f̀
¬
¬
(〈

ψ
0
〉

⊃
〈ψ

1
〉)

(a
x
)

¬
〈ψ

1
〉

f̀
¬

〈ψ
1
〉

(a
x
)

〈ψ
0
〉

⊃
〈ψ

1
〉

f̀
〈ψ

0
〉

⊃
〈ψ

1
〉

(a
x
)

〈ψ
0
〉

f̀
〈ψ

0
〉

(⊃
-E

)
〈ψ

0
〉

,
〈ψ

0
〉

⊃
〈ψ

1
〉

f̀
〈ψ

1
〉

(⊃
-E

)
〈ψ

0
〉

,
¬

〈ψ
1
〉

,
〈ψ

0
〉

⊃
〈ψ

1
〉

f̀
⊥

(⊃
-I

)
〈ψ

0
〉

,
¬

〈ψ
1
〉

f̀
¬
(〈

ψ
0
〉

⊃
〈ψ

1
〉)

(⊃
-E

)
¬
¬

(〈
ψ
0
〉

⊃
〈ψ

1
〉)

,
〈ψ

0
〉

,
¬

〈ψ
1
〉

f̀
⊥

(⊃
-I

)
¬
¬

(〈
ψ
0
〉

⊃
〈ψ

1
〉)

,
〈ψ

0
〉

f̀
¬
¬

〈ψ
1
〉

(⊃
-E

)
¬
¬

(〈
ψ
0
〉

⊃
〈ψ

1
〉)

,
〈ψ

0
〉

f̀
〈ψ

1
〉

(⊃
-I

)
¬
¬

(〈
ψ
0
〉

⊃
〈ψ

1
〉)

f̀
〈ψ

0
〉

⊃
〈ψ

1
〉

(⊃
-I

)
f̀

¬
¬

(〈
ψ
0
〉

⊃
〈ψ

1
〉)

⊃
〈ψ

0
〉

⊃
〈ψ

1
〉

F
ig

ur
e

2.
3:

P
ar

ts
of

P
ro

of
s

fo
r

L
em

m
a

2.
10

.3
.

I.
H

.
st

an
ds

fo
r

in
du

ct
io

n
hy

po
th

es
is

.

33

I.
H

.
〈Γ

〉,
〈ψ

0
〉

f̀
〈ϕ

〉
(a

x)
¬
〈ϕ

〉
f̀
¬
〈ϕ

〉
(⊃

-E
)

〈Γ
〉,
〈ψ

0
〉,

¬
〈ϕ

〉
f̀
⊥

(⊃
-I

)
〈Γ

〉,
¬
〈ϕ

〉
f̀
¬
〈ψ

0
〉

. . .
(s

am
e

as
le

ft
)

〈Γ
〉,
¬
〈ϕ

〉
f̀
¬
〈ψ

1
〉

(∧
-I

)
〈Γ

〉,
¬
〈ϕ

〉
f̀
¬
〈ψ

0
〉∧

¬
〈ψ

1
〉

I.
H

.
〈Γ

〉
f̀
¬(

¬
〈ψ

0
〉∧

¬
〈ψ

1
〉)

(⊃
-E

)
〈Γ

〉,
¬
〈ϕ

〉
f̀
⊥

(⊃
-I

)
〈Γ

〉
f̀
¬¬

〈ϕ
〉

L
em

m
a

2.
10

.3
f̀
¬¬

〈ϕ
〉⊃

〈ϕ
〉

(⊃
-E

)
〈Γ

〉
f̀
〈ϕ

〉

F
ig

ur
e

2.
4:

(∨
-E

)
ca

se
in

th
e

pr
oo

f
of

T
he

or
em

2.
10

.4
.

34

2.11 Model Translation

In Section 2.10, we considered a translation from a formula interpreted in S4 ∗ · · · ∗ S4 into

a formula interpreted in IEC. It is natural to ask for an adjoint model translation that

translates a model of IEC into a model of S4 ∗ · · · ∗ S4.

From a given finite model of IECM = 〈W,¹, (fa)a∈A, ρ〉, we construct a model

for S4 ∗ · · · ∗ S4 M ′ = 〈W ′, (Ra)a∈A, ρ′〉. We also give a function t : W → W ′ so that

the following equivalency holds

〈W,¹, (fa)a∈A, ρ〉, w |= 〈ϕ〉 ⇐⇒ 〈W ′, (Ra)a∈A, ρ′〉, t(w) |=c ϕ.

where |=c stands for the validity relation for S4 ∗ · · · ∗ S4 defined in Definition 2.11.2.

Definition 2.11.1. A model for multiple S4 modal logic is a tuple 〈W, (Ra)a∈A, ρ〉
where

• W is a set.

• Ra is a preorder on W .

• ρ : PV ar → P(W).

Definition 2.11.2. For a formula, a model for multiple S4 modal logic 〈W, (Ra)a∈A, ρ〉
and a state w ∈ W , we define the validit relation M = 〈W, (Ra)a∈A, ρ〉, w |=c ϕ

inductively on the form of ϕ as follows:

(Case ϕ = ⊥) M,w |=c ⊥ never holds.

(Case ϕ = P) M,w |=c P if and only if w ∈ ρ(P).

(Case ϕ = Kaψ) M,w |=c Kaψ if and only if M,v |=c ψ for any v ∈ W with wRav.

(Case ϕ = ψ0 ∧ ψ1) M,w |=c ψ0∧ψ1 if and only if both M,w |=c ψ0 and M,w |=c ψ1

hold.

(Case ϕ = ψ0 ∨ ψ1) M,w |=c ψ0 ∨ ψ1 if and only if either M,w |=c ψ0 or M,w |=c

ψ1 holds.

(Case ϕ = ψ0 ⊃ ψ1) M,w |=c ψ0 ⊃ ψ1 if and only if the validity M,w |=c ψ0 implies

the validity M,w |=c ψ1.

Now, we define the translation of models.

Notation 2.11.3. ↑X denotes the upward-closure of a set X.

35

Definition 2.11.4. For a finite model of IECM = 〈W,¹, (fa)a∈A, ρ〉, we define a

model for S4 ∗ · · · ∗ S4 called [M] = 〈[W] , (Ra)a∈A, [ρ]〉.

• [W] is the set of maximal elements of W .

• xRay if and only if fa(x) ¹ y.

• [ρ](P) = ρ(P) ∩ [W].

Lemma 2.11.5. The tuple defined above is actually a model for S4 ∗ · · · ∗ S4.

Proof. We just prove that Ra is a preorder.

• Ra is reflexive. xRax is equivalent to fa(x) ¹ x. This holds because fa is a

desceinding function by Definition 2.4.1.

• Ra is transitive. Assume xRay and yRaz. This is equivalent to fa(x) ¹ y and

fa(y) ¹ z. Since fa is monotonic, fa(y) º fa(fa(x)). Since fa is idempotent,

fa(y) º fa(x). Combining two of the above, we have z º fa(x). This means

xRaz.

Now we can show the main result of this section. The translation of formulas

from S4 ∗ · · · ∗ S4 to IEC is beautifully combined with the translation of models from

IEC to S4 ∗ · · · ∗ S4.

Theorem 2.11.6. For a finite model M of IEC, the following equivalency holds:

M,w |= 〈ϕ〉 ⇐⇒ [M], v |=c ϕ for all v ∈ [W] with v º w.

Proof. By induction on the form of ϕ. We let M = 〈W,¹, (fa)a∈A, ρ〉 and [M] =

〈[W], (Ra)a∈A, [ρ]〉. We abbreviate M,w |= ϕ into w |= ϕ and [M], w |=c ϕ into

w |=c ϕ.

(Case ϕ = ⊥) Neither side ever holds.

(Case ϕ = P) Note 〈ϕ〉 = ¬¬P .

w |= ¬¬P ⇔ for any x º w, there exists x ¹ v ∈ W exists v ∈ ρ(P)

⇔ v |=c P. for all v ∈ [W] with v º w.

36

(Case ϕ = Kaψ) Note 〈ϕ〉 = ¬¬Kaψ4.

w |= ¬¬Ka 〈ψ〉 ⇔ for any v º w, there exists x º v and fa(x) |= 〈ψ〉

⇔ for any v ∈ [W] with v º w, fa(v) |= 〈ψ〉

⇔ for any v ∈ [W] with v º w, for any x º fa(v), x |=c ψ (I.H.)

⇔ for any v ∈ [W] with v º w, v |=c Kaψ.

(Case ϕ = ψ0 ∧ ψ1) Note 〈ϕ〉 = 〈ψ〉0 ∧ 〈ψ〉1. Directly from the induction hypothe-

sis.

(Case ϕ = ψ0 ∨ ψ1) Note 〈ϕ〉 = ¬(¬ 〈ψ0〉 ∧ ¬ 〈ψ1〉).

w |= ¬(¬ 〈ψ0〉 ∧ ¬ 〈ψ1〉)

⇔ for any v º w, there exists x Â v and either x |= 〈ψ0〉 or x |= 〈ψ1〉 holds.

⇔ for any v ∈ [W] with v º w, either v |= 〈ψ0〉 or x |= 〈ψ1〉 holds.

⇔ for any v ∈ [W] with v º w, v |=c ψ0 ∨ ψ1 holds.

(Case ϕ = ψ0 ⊃ ψ1) (⇒) Assume w |= 〈ψ0〉 ⊃ 〈ψ1〉. For any v º w, v |= 〈ψ0〉
implies v |= 〈ψ1〉. Especially, for any v ∈ [W] with v º w, v |= 〈ψ0〉 implies

v |= 〈ψ1〉. By induction hypothesis, For any v ∈ [W] with v º w, v |=c ψ0

implies v |=c ψ1. By definition of |=c, v |=c ψ0 ⊃ ψ1 holds for such v.

(⇐) Assume [M], v |=c ψ0 ⊃ ψ1 for all v ∈ [W] with v º w. For an arbitrary

chosen x º w, assume x |= 〈ψ0〉. By induction hypothesis, for all v ∈ [W] with

v º x, v |=c ψ1 holds. By assumption v |=c ψ1 holds. By induction hypothesis,

x |= 〈ψ1〉 holds. That means w |= 〈ψ0〉 ⊃ 〈ψ1〉.

Extending this result to infinite models is future work. It would require coinductive

methods. That would be a prerequisite to fully understand the relationship between

IEC and S4 ∗ · · · ∗ S4. Viewing this relationship as an adjoint relation might be inter-

esting especially after we consider reduction of proofs in both logics. It would be also

interesting to Compare the proofs of Theorem 2.10.4 and Theorem 2.11.6 and then

find duality among them.

4I.H. stands for induction hypothesis.

37

2.12 Comparison with Creative Subject Argument

Dummet [9, Section 6.3] gives an axiom candidate

∀n(`n (ϕ ∨ ψ)) ⊃ (`n ϕ) ∧ (`n ψ)

for creative subjects. When we interpret `n as a modality, this axiom candidate is

very similar to the rule (∨K). This axiom candidate is validated by a position with

“we have proved a statement just in case we have effected a construction which would,

by itself, be a proof of that statement, whether or not we have noticed that it is so.”

Since the creative subject argument involves a clock n of natural number, it assumes

total order of time so that it can be regarded as a special case of the model of IEC.

Also, the creative subject argument only involves a single agent so that it can be

regarded as a special case of the model of IEC.

2.13 Future Work

When we consider reduction of proofs, we speculate that we can find an upper bound

of the computational complexity of the decision of whether a formula is theorem or

not.

The proofs of strong completeness and finite model property given here are not

constructive in that double negation elimination is used in the meta level. We specu-

late that the whole argument can be rewritten constructively, using methods similar

to those used by Veldman [41], who gave an intuitionistic proof of completeness of

intuitionistic predicate logic.

It remains open whether the classical epistemic logic can be interpreted in IEC in

the spirit of Prawitz’s reductive proof theory [33].

38

Chapter 3

Axiom Type for Sequential Consistency

A schedule determines temporal partial order of events such as message sending and

receiving. A correct program must behave correctly under every schedule. Shared

memory consistency is a restriction on schedules. When a stronger memory consistency

is posed, it is easier for programs to behave correctly. This is analogous to the fact

that when a stronger condition is posed upon models, more formulas become valid.

In this section, we characterise sequential consistency with a set of axioms. Se-

quential consistency defined by Lamport [26] is essentially a condition requiring the

states of memory lined up in a total order. We define a deduction system `SC by

adding an axiom type to IEC and characterise sequential consistency.

Henceforth, we assume A = {m} ∪ P (m /∈ P), where P is the set of processes

and m represents the shared memory.

3.1 Definitions

Sequential consistency requires the memory states to line up in a total order. A

straightforward way to model sequential consistency might be choosing the set of

memory states in the model and then asserting the memory states are lined up in a

total order. Actually, we can identify a memory state as a state w with fm(w) = w

because this equation asserts that the memory’s state seen from the state w is the

state w itself. This straightforward modelling of sequential consistency turns out

to be in appropriate logically because there is no formula which holds exactly in the

models defined in that naive way. Even when there are memory states v and w without

temporal relation between them, if the whole model is consists of a part containing v

and another disjoint, unrelated part containing w, no formula on no state can recognise

the break of sequential consistency. Considering this pitfall, we can model sequential

39

consistency as a class of models defined below.

Definition 3.1.1. A sequential model is a model where for any states w,w′ and x,

x ¹ w, x ¹ w′, fm(w) = w and fm(w′) = w′ imply w ¹ w′ or w′ ¹ w.

Definition 3.1.2. We let SC be the set of formula of the form (Kmϕ ⊃ Kmψ) ∨
(Kmψ ⊃ Kmϕ).

We add a rule (SC) to the previous calculus `: (SC) ` ϕ (ϕ ∈ SC)

We define Γ `SC ϕ in the same way as Γ ` ϕ.

Note that all axioms in the set SC are classical tautologies so that adding these axioms

to classical logic is meaningless. This is the merit of using intuitionistic logic rather

than classical logic.

3.2 Soundness

Lemma 3.2.1. `SC ϕ ⇒ M |= ϕ for any sequential model M .

Proof. We extend the induction of Lemma 2.5.1 with a clause for the rule (SC).

(SC) Seeking contradiction, assume M,w 6|= (Kmϕ ⊃ Kmψ) ∨ (Kmψ ⊃ Kmϕ). The

definition for |= says that there exist states w0, w1 º w with M,w0 |= Kmϕ,

M,w1 |= Kmψ, M,w1 6|= Kmψ and M,w0 6|= Kmϕ. These and Kripke mono-

tonicity (Lemma 2.4.3) contradicts to the assumption that M is a sequential

model.

Other cases are the same as Lemma 2.5.1.

3.3 Strong Completeness

Definition 3.3.1. A set of formulas Γ is SC-saturated if and only if all of these

conditions are satisfied:

1. Γ is SC-deductively closed, i.e., Γ `sc ϕ ⇒ ϕ ∈ Γ,

2. ϕ ∨ ψ ∈ Γ ⇒ ϕ ∈ Γ or ψ ∈ Γ,

3. Γ 6`sc ⊥.

Lemma 3.3.2 (Saturation lemma). For a set of formulas Γ with Γ 6`sc ϕ, there exists

a saturated set of formulas Γω with Γω 6`sc ϕ and Γ ⊂ Γω.

40

This lemma can be proved in the same way as Lemma 2.7.6 where each ` is replaced

by `sc.

Definition 3.3.3 (Canonical model candidate for sequential consistency). We define

a tuple

Msc = 〈W sc,¹sc, (fsc
a)a∈A, ρsc〉 in the same way as Definition 2.7.7 of Mc except

that W sc is the set of SC-saturated sets of formulas.

Lemma 3.3.4 (Canonical model for sequential consistency). The tuple Msc is a

sequential model.

Proof. First, we can show, in the same way as before, that checking fsc
a is actually a

function W sc → W sc. Also, checking each condition in Definition 2.4.1 is similar so

that we see Msc is actually a model. Finally, to see that the model Msc is sequential,

let Γ, ∆ and Θ be states of Msc and assume Θ ¹sc ∆, Θ ¹sc ∆, fsc
m (Γ) = Γ and

fsc
m (∆) = ∆. We claim that either ∆ ¹sc Γ or Γ ¹sc ∆ holds. Seeking contradiction,

deny the claim. Since the relation ¹sc is actually the set theoretic inclusion, there

exist formulas ϕ and ψ with ϕ ∈ Γ, ϕ /∈ ∆, ψ ∈ ∆ and ψ /∈ Γ. Since fsc
m (Γ) = Γ,

Kaψ /∈ Γ and Kaϕ ∈ Γ hold. Similarly, Kaϕ /∈ ∆ and Kaψ ∈ ∆ hold. Since Θ is

SC-saturated, (Kaϕ ⊃ Kaψ)∨ (Kaϕ ⊃ Kaψ) is in Θ. The definition of saturation says

either Kaϕ ⊃ Kaψ ∈ Θ or Kaψ ⊃ Kaϕ ∈ Θ. Consequently, either Kaϕ ⊃ Kaψ ∈ Γ or

Kaψ ⊃ Kaϕ ∈ ∆ holds. Each case leads to contradiction by deductive closedness of Γ

and ∆.

Lemma 3.3.5. For an SC-saturated set of formulas Γ and the canonical model for

sequential consistency Msc, an equivalency ϕ ∈ Γ ⇐⇒ Msc,Γ `sc ϕ holds.

This lemma can be proved in the same way as Lemma 2.7.9.

Theorem 3.3.6 (Strong completeness for sequential consistency). Γ `sc ϕ holds if

M |= Γ implies M |= ϕ for every sequential model M .

Proof. We show the contraposition: assuming Γ 6`sc ϕ, we show that there exists a

sequential model M that satisfies M |= Γ but not M |= ϕ. By Lemma 3.3.2, there

is an SC-saturated set of formula Γ′ with Γ′ 6` ϕ and Γ′ ⊃ Γ. By Lemma 3.3.5,

Msc, Γ′ |= Γ but not Msc, Γ′ |= ϕ. These two facts deny Γ |= ϕ.

Example Theorem In Introduction, we gave an example of deducible judgements

of `sc:

KaKmKaϕ,KbKmKbψ `sc KaKbψ ∨ KbKaϕ. We give a proof for this judgement in

Figure 3.1.

41

P
ar

t
A

(a
x
)

K
b

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
`
sc

K
b

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
(T

)
K

b
K

a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
`

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)

(a
x
)

K
m

K
a

ϕ
`
sc

K
m

K
a

ϕ
(a

x
)

K
m

K
a

ϕ
⊃

K
m

K
b

ψ
`
sc

K
m

K
a

ϕ
⊃

K
m

K
b

ψ
(⊃

-E
)

K
m

K
a

ϕ
,

K
m

K
a

ϕ
⊃

K
m

K
b

ψ
`
sc

K
m

K
b

ψ
(n

e
c
)

K
a

K
m

K
a

ϕ
,

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
`
sc

K
a

K
m

K
b

ψ
(⊃

-I
)

K
a

K
m

K
a

ϕ
`
sc

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
⊃

K
a

K
m

K
b

ψ
(⊃

-E
)

K
b

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

),
K

a
K

m
K

a
ϕ

`
sc

K
a

K
m

K
b

ψ
(⊃

-I
)

K
b

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
`
sc

K
a

K
m

K
a

ϕ
⊃

K
a

K
m

K
b

ψ
(∨

-I
)

K
b

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
`
sc

(K
m

K
a

ϕ
⊃

K
m

K
b

ψ
)
∨

(K
m

K
b

ψ
⊃

K
m

K
a

ϕ
)

P
ar

t
B

(S
C

)
`
sc

(K
m

K
a

ϕ
⊃

K
m

K
b

ψ
)
∨

(K
m

K
b

ψ
⊃

K
m

K
a

ϕ
)

(n
e
c
)

`
sc

K
a

`

(K
m

K
a

ϕ
⊃

K
m

K
b

ψ
)
∨

(K
m

K
b

ψ
⊃

K
m

K
a

ϕ
)´

(∨
K

)
`
sc

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
∨

K
a
(K

m
K

b
ψ

⊃
K

m
K

a
ϕ
)

(n
e
c
)

`
sc

K
b

`

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
∨

K
a
(K

m
K

b
ψ

⊃
K

m
K

a
ϕ
)´

(∨
K

)
`
sc

K
b

K
a
(K

m
K

a
ϕ

⊃
K

m
K

b
ψ

)
∨

K
b

K
a
(K

m
K

b
ψ

⊃
K

m
K

a
ϕ
)

. . .
P
ar

t
A

. . .
(s

a
m

e
a
s

le
ft

,
sw

a
p

(a
,

b
)

a
n
d

(ϕ
,

ψ
))

(∨
E
)

`
sc

(K
a

K
m

K
a

ϕ
⊃

K
a

K
m

K
b

ψ
)
∨

(K
b

K
m

K
b

ψ
⊃

K
b

K
m

K
a

ϕ
)

P
ar

t
C

(a
x
)

K
a

K
m

K
a

ϕ
`
sc

K
a

K
m

K
a

ϕ
(a

x
)

K
a

K
m

K
a

ϕ
⊃

K
a

K
m

K
b

ψ
`
sc

K
a

K
m

K
a

ϕ
⊃

K
a

K
m

K
b

ψ
(⊃

-E
)

K
a

K
m

K
a

ϕ
⊃

K
a

K
m

K
b

ψ
,

K
a

K
m

K
a

ϕ
`
sc

K
a

K
m

K
b

ψ

(a
x
)

K
m

K
b

ψ
`
sc

K
m

K
b

ψ
(T

)
K

m
K

b
ψ

`
sc

K
b

ψ
(n

e
c
)

K
a

K
m

K
b

ψ
`
sc

K
a

K
b

ψ
(⊃

-I
)

`
sc

K
a

K
m

K
b

ψ
⊃

K
a

K
b

ψ
(⊃

-E
)

K
a

K
m

K
a

ϕ
⊃

K
a

K
m

K
a

ψ
,

K
a

K
m

K
a

ϕ
`
sc

K
a

K
b

ψ

M
a
in

P
ar

t

. . .
P
ar

t
B

(K
a

K
m

K
a

ϕ
⊃

K
a

K
m

K
b

ψ
)
∨

(K
b

K
m

K
b

ψ
⊃

K
b

K
m

K
a

ϕ
)

. . .
P
ar

t
C

K
m

K
a

ϕ
⊃

K
m

K
b

ψ
,

K
a

K
m

K
a

ϕ
`
sc

K
a

K
b

ψ

K
m

K
a

ϕ
⊃

K
m

K
b

ψ
,

K
a

K
m

K
a

ϕ
`
sc

K
a

K
b

ψ
∨

K
b

K
a

ϕ

. . .
(s

a
m

e
a
s

le
ft

,
sw

a
p

(a
,

b
)

a
n
d

(ϕ
,

ψ
))

∨
E

K
a

K
m

K
a

ϕ
,

K
b

K
m

K
b

ψ
`
sc

K
a

K
b

ψ
∨

K
b

K
a

ϕ

F
ig

ur
e

3.
1:

A
pr

oo
f
di

ag
ra

m
fo

r
an

ex
am

pl
e

th
eo

re
m

in
` s

c.

42

Chapter 4

Waitfree Computation

4.1 Problem Domain

A distributed program assigns a program to each process. When we execute a dis-

tributed program, processes obtain execution steps in the order determined by the

scheduler.

A distributed program is waitfree when there exists such a fixed number k that

under any schedule, any process finishes before using k steps. The informal meaning

of this condition is forbidding a process to wait for another process. Assuming a

process p waits for another process q to do something, under an unfriendly schedule,

the condition for waitfreedom is broken. Actually, under a schedule giving the first

k steps exclusively to the process p the process q cannot do anything in those first

k steps while the process p waits for the process q to do that something, thus breaking

the wait-free condition.

Some tasks can be solved by a waitfree distributed program while others cannot.

In this chapter, we consider the problem of distinguishing the waitfreely solvables

task and the waitfreely unsolvable ones. Although this problem is undecidable in

general [12], we find an approximation problem that is decidable.

4.2 Logical Representation of the Problem

While sequential consistency is a restriction on schedules, wait-freedom is a restriction

on distributed programs. The behaviour of distributed programs depend on the sched-

ule1. The a correct distributed program can be described as a distributed program

1A motivation for introducing formal reasoning into the area of distributed computation is in this

fact, which makes testing harder.

43

which gives correct behaviour under any schedule. This form of definition is similar

to that of validity of logical a formula: a valid logical formula is a formula which is

satisfied by any model. We consider the schedule v.s. distributed program relation is

similar to the formula v.s. model relation. In Chapter 3, in this chapter, we express

wait-freedom as a class of formulas.

A distributed program specifies from which process, to which process, and in what

order signals are transmitted. We consider the signal transimission in a logical formula.

In short, a modality over a modality like KpKqP describes communication. We regard

processes as agents. A propositional variable Ip informally denotes the fact that the

process p has started. A logical formula KqKpIp informally states “the process p

was aware of the fact that the process p had started, and then told the fact to the

process q.” Similarly, another formula KpKqKpIp informally states “the process p was

aware of the fact that the process p had started, and then told the fact to the process q.

The process q in turn told back to the process p that the process q had received the fact

from p.” The latter communication pattern can be obtained by programs described

in the following lines:

1. When process p starts, it sends a signal to the process q, then waits for a reply

from q and then terminates.

2. When process q starts, it waits for a signal from the process p, replies back to p,

and then terminates.

Unfortunately, since this distributed program is not waitfree, we cannot include the

formula KpKqKpIp in the class of formulas representing waitfreedom. We will define

the class of formulas and call them waitfree protocol descriptions.

Actually, although a process running a waitfree program is forbidden to wait for

another process, it is allowed to wait for the shared memory2. For example, after a

process makes a read request to the shared memory, it is allowed to wait for a value

from the shared memory. Also, after a process makes a write request to the shared

memory, it is allowed to wait for an acknowledgement from the shared memory. That

is why we introduced a special agent m ∈ A representing the shared memory. We call

other agents in A processes so that A = {m} ∪ P (m /∈ P) holds.

After these observations, we can obtain the class of formulas representing a waitfree

distributed program. When we are interested in a fixed waitfree distributed program,

for any process, there is a constant k and the process can interact with the memory

2Otherwise, any communication whatsoever would be impossible.

44

for up to k times. Moreover, since a process is only allowed to interact with the

shared memory not with the process. Thus, a waitfree distributed program can only

make sure the property described as KpKmKp · · ·KmKpP where Km and Kp appear

alternatively. We call such a logical formula a waitfree program description.

Finally, as well the class of schedules and the class of wait-free programs, we de-

scribe specifications for wait-free programs in a logical formula. We forcifully decide

that we only specify the posession of knowledge at finish of the program so that we

only consider positive logical formulas as waitfree specifications.

We define a class of formulas called waitfree assertions combining the waitfree

protocol description and the waitfree specifications. Waitfree assertions have a special

finite model property: if a waitfree assertion is consistent3, there is a finite model of

a special shape where the assertion is valid. The special shape mimics the scheduling

of shared memory defined by Saks and Zaharoglou [34].

Definition 4.2.1. Assume there is a vector of atomic formulas (Ip)p∈P . A waitfree

protocol description ϕ is a formula of the form

ϕ =
∧
p∈P

KpKmKp · · ·KpIp

where Kp and Km appear alternatively in “· · · ”. A waitfree task specification ψ is

defined with the BNF:

ψ ::= Kpψ | ψ ∧ ψ | ψ ∨ ψ | Ip

where p stands for a process in P . A waitfree assertion is a formula ϕ ⊃ ψ where ϕ

is a waitfree protocol description and ψ is a waitfree task specification.

4.3 Representation of Schedules as Models

Definition 4.3.1. A partial schedule (σi)i∈I is a finite sequence of subsets of P .

Definition 4.3.2. For a process p ∈ P and a partial schedule σ, countp(σ) is the

cardinality |{i ∈ I | p ∈ σi}|.
For a waitfree protocol description ϕ =

∧
p∈P KpKm · · ·KpIp, countp(ϕ) is the

number of Km occurrences in KpKm · · ·KpIp.

A partial schedule σ is compatible to a waitfree protocol description ϕ if countp(ϕ) =

countp(σ) for any process p ∈ P .

We introduce a special thing o called an external observer with o /∈ A.
3A formula ϕ is consistent if and only if ⊥ cannot be proved even if ϕ is added as an axiom.

45

Figure 4.1: A model R(·, σ) induced by the partial schedule σ = ({a, b}, {a}, {b}). A

solid arrow pointing to (x, n) shows an fx mapping. Dotted arrows show ¹ relations.

We omit implied arrows and the valuation.

Definition 4.3.3. For a waitfree protocol description ϕ and a compatible partial sched-

ule (σi)i∈I , we define a waitfree schedule model R(ϕ, σ) = 〈W,¹, (fx)x∈A, ρ〉 as:

• W = {(p, i) ∈ P × N | p ∈ σi} ∪ {(p, i)′ ∈ P × N | p ∈ σi} ∪ {(m, i) | i ∈
I} ∪ {(o, i) | i ∈ I} ∪ {⊥},

• (a, i) ¹ (m, i) ¹ (a, i)′,

• (x, j) ¹ (o, i) if and only if j ≤ i,

• ⊥ ¹ w for all w ∈ W ,

• (x, j)′ ¹ (o, i) if and only if j ≤ i,

• fa(w) =


the least (a, j) with (a, j) ¹ w (if there exists such (a, j))

(the definition of ¹ assures there is the least such (a, j)),

⊥ (if such (a, j) does not exist).

• ρ(Ia) = {w ∈ W | (a, 0) ¹ w}.

An example of a model induced by a partial schedule is shown in Figure 4.1.

We can state the logical characterisation of waitfree communication.

Theorem 4.3.4 (Completeness for waitfree communication). Assume ϕ ⊃ ψ is a

waitfree assertion. The relation `SC ϕ ⊃ ψ holds if the relation R(ϕ, σ), (o, n) |= ψ

holds for any compatible partial schedule σ where the state (o, n) is the last state of

the waitfree model R(ϕ, σ).

46

To prove completeness, we only use special models called singleton models induced

by a permutation of processes.

Definition 4.3.5. For a set of processes P , we define S(P) to be the set of the per-

mutations of P .

Definition 4.3.6. For π ∈ S(P) and 0 ≤ k ≤ |P |, we define SC(π, k) to be the set

{KmKaIa ⊃ KmKbIb | b ≤ a in π0, . . . πk}.

Lemma 4.3.7. `sc
∨

π∈S(A) SC(π, |P |) holds.

Proof. It suffices to use rule (SC) many times.

Definition 4.3.8. For a permutation π of P and a waitfree protocol description ϕ,

we define a partial schedule σ(ϕ, π) as

σ(ϕ, π) =

countπ0 (ϕ)︷ ︸︸ ︷
π0, · · · , π0,

countπ1 (ϕ)︷ ︸︸ ︷
π1, · · · , π1, · · · · · · · · · ,

countπn (ϕ)︷ ︸︸ ︷
πn, · · · , πn .

Definition 4.3.9. A singleton model is a model of the form R(ϕ, σ(ϕ, π)). We abbre-

viate this to R(ϕ, π).

For a singleton model and an index k ∈ I, wk denotes the minimum external

observer state above all πj states for j < k.

Definition 4.3.10. For a waitfree protocol description ϕ =
∧

a∈A

na︷ ︸︸ ︷
KaKmKa · · ·Ka Ia,

we define the restriction

ϕ ¹p,k=
∧

a∈A¹p,k

na︷ ︸︸ ︷
KaKmKa · · ·Ka Ia, where A ¹p,k= {a | pj = a for some j < k}.

Lemma 4.3.11. R(ϕ, π), (o, k) |= ψ =⇒ SC(π, k) ` ϕ ¹π,k⊃ ψ.

Proof of Lemma 4.3.11. By induction on k.

(Case k = 0) We show a stronger proposition: (o, 0) |= ψ =⇒ fp0(o, 0) |= ψ,`
ϕ ¹p,0⊃ ψ and ` ϕ ¹p,0⊃ Kaψ. by inner induction on ψ.

(When ψ is an atomic formula P) P = Iπ0 holds. Since ϕ ¹π,0= Kπ0KmKπ0 · · ·KmKπ0Iπ0 ,

` ϕ ¹π,0⊃ Kπ0P holds. So, SC(π, 0) ` ϕ ¹π,0⊃ Kπ0P holds. Consequently,

SC(π, 0) ` ϕ ¹π,0⊃ P also holds.

(When ψ = ψ0 ∧ ψ1 or ψ0 ∨ ψ1) Induction goes smoothly.

(When ψ = Kaψ′) Assume (o, 0) |= Kaψ′. Claim: a = π0 holds. Seeking

contradiction, assume a 6= π0. That means fa(o, 0) = ⊥. However, waitfree

47

task specification is satisfied at the state ⊥. Contradiction. We have proved

a = π0. Using this, we can show that fa(o, 0) |= ψ′ holds. By idempotency

of fa, fa(fa((o, 0))) |= ψ′ holds. This means fa((o, 0)) |= Kaψ′. Since

(o, 0) |= ψ′, by inner induction hypothesis, ` ϕ ¹π,0⊃ Kaψ′
a. By proof

theoretic consideration, ` ϕ ¹π,0⊃ KaKaψ′ holds.

(Case k = k′ + 1) Like the base case, we show a stronger proposition (o, k) |= ψ ⇔
fπk

((o, k)) |= ψ ⇒ SC(π, k) ` ϕ ¹π,k⊃ ψ and SC(π, k) ` ϕ ¹π,k⊃ Kπk
ψ, using

induction on ψ.

(When ψ = P , an atomic formula) Either R(ϕ, π), wk′ |= P or Iπk
= P

holds. In the former case, by induction hypothesis. In the latter case,

similarly as the base case.

(When ψ = ψ0 ∧ ψ1 or ψ0 ∨ ψ1) Induction goes smoothly.

(When ψ = Kxψ′) If πk 6= x, fπk
((o, k)) |= Kxψ′ implies (o, k′) |= Kxψ′. By

outer induction hypothesis, SC(π, k′) ` ϕ ¹π,k′⊃ Kxψ′ and SC(π, k′) `
ϕ ¹π,k′` ϕ ¹π,k′⊃ Kxψ′ hold. Here, we can safely replace k′ with k. If

πk = x, (o, k) |= Kxψ′ imply (o, k) |= ψ′. By inner induction hypothesis,

we obtain SC(π, k) ` ϕ ¹π,k⊃ Kxψ′. This also implies SC(π, k) ` ϕ ¹π,k⊃
KxKxψ′.

After showing this generalised lemma, proving Theorem 4.3.4 is easy.

Proof of Theorem 4.3.4. Since R(ϕ, p), w|P | |= ψ, SC(p, |P |) ` ϕ ⊃ ψ. By Lemma 4.3.7,

`sc ϕ ⊃ ψ.

Any models induced by a partial schedule is finite. For a waitfree assertion ϕ, it is

decidable whether `sc ϕ holds or not.

4.4 Decidability of Solvability of Waitfree Task Specification

Definition 4.4.1. A waitfree task specification ψ is solvable if there is such a waitfree

protocol description ϕ that the relation R(ϕ, σ), (o, n) |= ψ holds for any compatible

partial schedule σ where the state (o, n) is the last state of the model R(ϕ, σ).

Fact. The set of solvable waitfree task specifications are recursively enumerable be-

cause the relation `sc is axiomatised.

48

Fact. The set of unsolvable waitfree task specifications are recursively enumerable

because partial schedule-induced models are recursively enumerable.

Theorem 4.4.2. It is decidable whether a waitfree task specification is solvable or not.

Proof. These two facts imply that it is decidable whether a waitfree task specification

is solvable or not.

This does not contradict to the undecidability of waitfreely solvable tasks by Gafni

and Koutsoupias [12] because the undecidability proof utilises tasks that cannot be

expressed by waitfree task specifications. They use tasks involving consensus: the

tasks involving making agreements among processes, where whether an output value is

allowed or not depends on other processes’ output values. Waitfree task specifications

cannot describe such tasks.

49

Chapter 5

Related Work

Van Benthem [39] investigates the connection between intuitionistic logic and infor-

mation dynamics. He speculates:

It might be that intuitionistic logic points the way towards a grand

synthesis of information analysis in the standard model-theoretic style with

the dynamic view of logic as embodied in proof and games.

This paper replies his speculation by defining knowledge in terms of BHK-interpretation

and defining a proof system IEC embodying the interpretation.

Ondrej Majer’s Epistemic Logic with Relevant Agents [28] is similar to IEC in that

both logics have epistemic modalities and that both logics are not classical. However,

the logic given in [28] contains only one modality K for knowledge. This implicitly

assumes that there is a single agent, not multiple agents so that it is impossible for

their logic to treat communication between multiple agents.

Many logics have both temporal and epistemic modalities [35, 43]. Ewald [10]

proposes an intuitionistic logic with temporal modality. We unify the intuitionistic

semantics and temporal semantics so that the logic IEC lacks temporal modality yet

represents some temporal notions. Adding a temporal modality like Ewald [10] would

increase the expressivity of the logic, but it would complicate the syntax and semantics.

We would like to investigate the simple logic IECfirst and then expand IECwith

additional constructs.

In Kobayashi and Yonezawa’s logic [24], processes appear in formulas but time does

not appear in formulas because time is implicit in the system of logic programming.

This logic is different from IEC in that this logic is based on linear logic and that

their usage is logic programming.

50

Belnap and Harper’s “seeing to it that” (stit) logical operator aims at describing

interaction between agents. The semantics for the operator involves both agency and

temporal notion, which is more complicated than the meaning of Ka operator in IEC.

A fundamental difference of the stit operator and the epistemic operator in IEC is

whether the modalities mention the future or tha past. The stit operator mentions

the future while the epistemic operator mentions the past.

Dynamic epistemic logic is a logic that aims at reasoning about communication.

However the semantics of the logic involves instantaneous change of models. We

argue such instantaneous change of the whole world it is not a natural description of

asynchronous communication.

51

Chapter 6

Conclusion

We defined an intuitionistic modal logic called intuitionistic epistemic logic (IEC for

short). We defined both a natural deduction system and a Kripke model for it. We

proved both soundness and strong completeness. The deduction system of IEC is sim-

ilar to that of classical epistemic logic, but lacks negative introspection and double

negation elimination and has distribution of disjunction over epistemic modalities in-

stead. The semantics of IEC is similar to that of intuitionistic propositional logic, but

has an additional function on the states for each agent, which we call a modal function.

We defined the syntactic counterpart of the modal function and used it for extending

Aczel’s slash and proving disjunction property of IEC. The syntactic counterpart of

the modal function was also useful for proving strong completeness and finite model

property for IEC. By disjunction property, we know that the logic IEC is a construc-

tive logic. Also, decidability suggests the possibility of typed lambda calculus using

IEC as the typing system.

On the logic IEC, we analysed the concept of sequential consistency and wait-

free communication. The deepness of our anlaysis is represented in a deep proof tree

(Figure 3.1) for a property of a relatively simple and small wait-free protol involving

two processes. Distributed programming over shared memory can be seen as a game

involving the scheduler and the program. Logic can be seen as a game involving the

models and the formulas. We modelled schedules as a model of logic and programs

as formulas. Since sequential consistency is a restriction on schedules, we modeled

sequential consistency as a restriction on models. The restriction on the models rep-

resenting sequential consistency could actually axiomatized using an axiom type that

is similar to the axiom type for prelinerity defining a famous intermediate logic. Since

waitfreedom is a restriction on programs, we modelled waitfree programs as a set of

52

formulas called waitfree protocol description. We also modelled specification for wait-

free programs as a set of formulas called waitfree task specification. We used a waitfree

assertion, which is an implication formula consisting of a waitfree protocol description

and a waitfree task specification, to represent an assertion that a waitfree protocol

meets a specification.

53

Chapter 7

Discussion

7.1 Waitfree Computation

The Gödel Prize in 2004 was given to Herlihy and Shavit [19] and Saks and Za-

haroglou [34]. This work was motivated by these works. Herlihy and Shavit [19] used

subdivision of coloured simplicial complex to model waitfree computation. Each vertex

is coloured by an agent. Each simplex contains vertices with distinct colours. A vertex

may have an ancestor simplex called carrier. The minimum subset of (S∪V)×(S∪V)

containing the ancestor relation and the relation ∈ forms an order @. We can define

a partial fa : S → S where S is the set of simplex in a simplicial complex by let-

ting fa(s) = {x} where x is the maximum vertex below s (w.r.t. @) whose colour is

a. When we add a bottom simplex ⊥ and make fa total, we can regard a simplicial

complex as a model of IEC as in an example (Figure 7.1).

Saks and Zaharoglou [34] use full-information protocol [42]. Even the shared vari-

ables remember the whole history. In every component, knowledge increases mono-

tonically through time. This monotonicity suggests that their model can be analysed

effectively in Kripke models for intuitionistic logic. Saks and Zaharoglou [34] also sug-

gest that “We believe that it will be worthwhile to explore the connection with the

formal theory of distributed knowledge.” This work is following their remark in treat-

ing waitfree communication in a formal way, especially using a logic with epistemic

modality.

7.2 Sequential Consistency or Linearizability

Attiya and Welch [2] pointed out that sequential consistency [26] and linearizability [20]

are often confused. We briefly make sure that the deduction system `SC does not

54

Figure 7.1: How subdivision of simplicial complexes is transformed into IEC model.

Left: A simplex s0 = {va, vb} is subdivided into s1 = {va, wb}, s2 = {wa, wb} and

s3 = {wa, vb}. Right: IEC frame obtained from the left subdivision.

characterise linearizability. Herlihy [20] stated that linearizability is a local property;

in other words, when each memory object satisfies linearizability, the combined system

also has linearizability. However, the axiom type SC is not local. To see that, assume

there are two memory objects m and m′. The axiom type SC for m is (Kmϕ ⊃
Kmψ) ∨ (Kmψ ⊃ Kmϕ). The axiom type SC for m′ is (Km′ϕ ⊃ Km′ψ) ∨ (Km′ψ ⊃
Km′ϕ). Even when both of these axiom types are available, the mixed axiom type

(Km′ϕ ⊃ Kmψ) ∨ (Kmψ ⊃ Km′ϕ) is not derivable. This shows the characterised

property is not local.

7.3 Other Consistency Models

Steinke and Nutt [36] gave a lattice of consistency properties including: sequential

consistency, causal consistency, processor consistency, PRAM consistency, cache con-

sistency, slow consistency and local consistency. It is our future work modelling other

consistency properties.

7.4 The Cost of Monotonic Reasoning: Latency versus Through-

put

The logic IEC is more suitable in a situation where latency is more important than

throughput. Since we consider time as the partial order of intuitionistic Kripke models,

55

all knowledge must be preserved during time progress. Communication must be done

in full-information manner (as in full-information protocols in [42]) because messages

define the partial order. Although there are some methods [13–15, 42] for extracting

implementable protocols from full-information protocols, Our logic is advantageous

when latency is important so that it is important to know how many message in-

teractions are needed to accomplish a certain task. We plan to investigate network

protocols with IEC.

We speculate that replacing intuitionistic modalities with linear modalities might

enable us to deal with throughput oriented properties.

7.5 λ-calculus

It would be interesting to consider reduction of proofs because it leads to typed pro-

gramming language for asynchronous communication.

7.6 Disjunction Distribution Over K Modality

Since the semantics for modalities is defined by functions on Kripke frames, the disjunc-

tion distributes modalities in IEC. Kojima and Igarashi [25] avoids the distribution

of modalities over disjunction by giving up functional modality. On the other hand,

IEChas distribution of modalities over disjunction. We speculate that the difference

comes from the interpretation of modalities according to time: in [25], inner subfor-

mulas within the scope of the modality are interpreted in the future; while in IEC,

inner subformulas within the scope of the modalities are interpreted in the past.

By translation of Suzuki [37], when A is a singleton set, a model of IEC corresponds

to a model of intuitionistic predicate logic with singleton domain in the same manner a

model of the logic L3 of Ono [29] corresponds to the models of intuitionistic predicate

logic with constant domain. This fact suggests that the semantics of IEC is very

simple when A is a singleton set. Simplicity was our aim at the beginning.

7.7 Relationship with Intuitionistic Predicate Logic

The translation of Suzuki [37] suggests IECwith a single agent corresponds to a sin-

gleton domain. In intuitionistic predicate logic, the quantifiers ∀ and ∃ quantify over

elements of domain. These facts suggest quantification over the set of agents like

∀xKxϕ. From the logic allowing such quantification, we speculate that, by the method

56

of program extraction, we can obtain programs whose input and output contain names

of agents.

Also, extending the translation of Suzuki— [37] to intuitionistic logic with multiple

modailities would be an interesting work.

57

References

[1] N. Alechina, M. Mendler, V. de Paiva, and E. Ritter. Categorical and Kripke

semantics for constructive S4 modal logic. LNCS, pages 292–307, 2001.

[2] H. Attiya and J.L. Welch. Sequential consistency versus linearizability. ACM

Transactions on Computer Systems (TOCS), 12(2):122, 1994.

[3] P. Balbiani et al. ‘Knowable’ as ‘known after an announcement’. The Review of

Symbolic Logic, 1(03):305–334, 2008.

[4] A. Baltag, B. Coecke, and M. Sadrzadeh. Epistemic actions as resources. Journal

of Logic and Computation, 17(3):555, 2007.

[5] P. Bieber and T. Onera-Cert. A logic of communication in hostile environment.

In Computer Security Foundations Workshop III, 1990. Proceedings, pages 14–22,

1990.

[6] G.V. Bochmann and J. Gesci. A unified method for the specification and verifi-

cation of protocols. Proc. of the IFIP’77, (5), 1977.

[7] V. Costa and M. Benevides. Formalizing concurrent common knowledge as prod-

uct of modal logics. Logic Journal of IGPL, 13(6):665, 2005.

[8] H. Ditmarsch, W. Hoek, and B. Kooi. Dynamic Epistemic Logic. 2007.

[9] M.A.E. Dummett. Elements of intuitionism. Oxford University Press, USA, 2000.

[10] W.B. Ewald. Intuitionistic tense and modal logic. The Journal of Symbolic Logic,

51(1):166–179, 1986.

[11] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about knowledge.

The MIT Press, 2003.

[12] E. Gafni and E. Koutsoupias. Three-processor tasks are undecidable. SIAM

Journal on Computing, 28(3):970–983, 1999.

58

[13] J.Y. Halpern. Using reasoning about knowledge to analyze distributed systems.

Annual Review of Computer Science, 2(1):37–68, 1987.

[14] J.Y. Halpern and R. Fagin. A formal model of knowledge, action, and commu-

nication in distributed systems: preliminary report. In Proceedings of the fourth

annual ACM symposium on Principles of distributed computing, pages 224–236.

ACM, 1985.

[15] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed

environment. Journal of the ACM (JACM), 37(3):549–587, 1990.

[16] J.Y. Halpern and L.D. Zuck. A little knowledge goes a long way: knowledge-based

derivations and correctness proofs for a family of protocols. Journal of the ACM

(JACM), 39(3):449–478, 1992.

[17] R. Harrop. On the existence of finite models and decision procedures for proposi-

tional calculi. In Proceedings of the Cambridge Philosophical Society, volume 54,

page 1, 1958.

[18] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 13(1):124–149, 1991.

[19] M. Herlihy and N. Shavit. The topological structure of asynchronous computabil-

ity. Journal of the ACM (JACM), 46(6):858–923, 1999.

[20] M. Herlihy and J.M. Wing. Linearizability: A correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems (TOPLAS),

12(3):463–492, 1990.

[21] A. Heyting. Die formalen Regeln der intuitionistischen Logik. 1930.

[22] A. Heyting. Die intuitionistische grundlegung der mathematik. Erkenntnis,

2(1):106–115, 1931.

[23] L. Jia and D. Walker. Modal proofs as distributed programs. LNCS, pages 219–

233, 2004.

[24] N. Kobayashi and A. Yonezawa. Asynchronous communication model based on

linear logic. Formal Aspects of Computing, 7(2):113–149, 1995.

[25] K. Kojima and A. Igarashi. On constructive linear-time temporal logic. Proc. of

IMLA, 8, 2008.

59

[26] L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess progranm. IEEE transactions on computers, 100(28):690–691, 1979.

[27] C.J. Liau. Belief, information acquisition, and trust in multi-agent systems―A

modal logic formulation. Artificial Intelligence, 149(1):31–60, 2003.

[28] O. Majer and M. Pelǐs. Epistemic logic with relevant agents. In The Logica

Yearbook 2008, pages 123–135. Kings College Publications, 2009.

[29] H. Ono. On some intuitionistic modal logics. Publ. Res. Inst. Math. Sci.,

13(3):687–722, 1977.

[30] D. Peleg. Communication in concurrent dynamic logic. J. COMP. SYST. SCI.,

35(1):23–58, 1987.

[31] J. Plaza. Logics of public communications. Synthese, 158(2):165–179, 2007.

[32] G. Plotkin and C Stirling. A framework for intuitionistic modal logics: extended

abstract. In TARK ’86: Proceedings of the 1986 conference on Theoretical aspects

of reasoning about knowledge, pages 399–406. Morgan Kaufmann Publishers Inc.,

1986.

[33] D. Prawitz. Ideas and results in proof theory. In Proceedings of the second

scandinavian logic symposium, volume 63, pages 235–307, 1971.

[34] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology

of public knowledge. SIAM journal on computing(Print), 29(5):1449–1483, 2000.

[35] M. Sato. A study of Kripke-type models for some modal logics by Gentzen’s se-

quential method. Publications of the research institute for mathematical sciences,

13:381, 1977.

[36] R.C. Steinke and G.J. Nutt. A unified theory of shared memory consistency.

Journal of the ACM (JACM), 51(5):800–849, 2004.

[37] N.Y. Suzuki. Kripke bundles for intermediate predicate logics and Kripke frames

for intuitionistic modal logics. Studia Logica, 49(3):289–306, 1990.

[38] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduc-

tion: Vol.: 1. North-Holland, 1988.

[39] J. van Benthem. The information in intuitionistic logic. Synthese, 167(2):251–270,

2009.

60

[40] HP Van Ditmarsch, W. Van Der Hoek, and BP Kooi. Concurrent dynamic epis-

temic logic for MAS. In Proceedings of the second international joint conference

on Autonomous agents and multiagent systems, pages 201–208. ACM, 2003.

[41] W. Veldman. An intuitionistic completeness theorem for intuitionistic predicate

logic. The Journal of Symbolic Logic, 41(1):159–166, 1976.

[42] T.Y.C. Woo and S.S. Lam. A lesson on authentication protocol design. SIGOPS

Oper. Syst. Rev., 28(3):24–37, 1994.

[43] B. Wozna and A. Lomuscio. A logic for knowledge, correctness, and real time.

LNCS, 3487:1, 2005.

61

