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ABSTRACT

We propose hyper-lambda calculi, the typed lambda calculi based on hypersequent cal-

culi. A hyper-lambda term is a finite sequence of lambda terms, which represent concurrent

processes. We give three concrete hyper-lambda calculi: one synchronous and the other two

asynchronous. All employ a pair of communication primitives exchanging their inputs. In

the synchronous case, both sides succeed. In the asynchronous cases, at least one side obtains

the other side’s input. The synchronous calculus implements message-passing communication

and session types; the asynchronous calculus characterizes shared-memory waitfree commu-

nication. Among processes of a typed hyper-lambda term, all succeed in the synchronous

case while at least one succeeds in the asynchronous case. Logically, the processes are inter-

preted conjunctively in the synchronous case but disjunctively in the asynchronous case. The

synchronous calculus is based on Abelian logic: (φ⊸ ψ)⊗ (ψ⊸ φ) on top of multiplicative

additive fragment of intuitionistic linear logic (without some units); one of the asynchronous

calculi is based on Gödel-Dummett logic: (φ ⊃ ψ) ∨ (ψ ⊃ φ) on top of intuitionistic logic.

The hyper-lambda calculi are in Curry-Howard correspondence with the deduction systems

for these logics. We also give a similar development for monoidal t-norm logic and implement

the Gödel-Dummett case using Haskell.

　　　

ハイパーラムダ計算すなわちハイパー推件計算に基づく型付きラムダ計算を提案する．ハイパー

ラムダ項はラムダ項の有限列で，並列プロセスを表す．同期と非同期と二つのハイパーラムダ計算

を与える．両者ともに，互いに入力を交換する通信子の対を用いる．同期ハイパーラムダ計算では，

通信子双方が成功する．非同期ハイパーラムダ計算では，通信子の少なくとも片方がもう片方の

入力を獲得する．同期ハイパーラムダ計算はメッセージパッシング通信とセッション型を実装し，

非同期ハイパーラムダ計算は共有メモリの無待機計算を特徴づける．型付きハイパーラムダ項の

プロセスどものうち，同期ハイパーラムダ計算では全てが成功するが，非同期ハイパーラムダ計算

では少なくとも一つが成功する．論理的にプロセスどもは，同期ハイパーラムダ計算では連言で，

非同期ハイパーラムダ計算では選言で解釈される．同期ハイパーラムダ計算はアーベル論理に基づ

く: 直観主義線形論理の乗法的加法的断片 (除いくつかの単位論理式)に公理 (φ⊸ ψ)⊗ (ψ⊸ φ)

を加えた論理である．非同期ハイパーラムダ計算はゲーデル・ダメット論理に基づく: 直観主義論

理に公理 (φ ⊃ ψ) ∨ (ψ ⊃ φ)を加えた論理である．これらのハイパーラムダ計算は，それぞれの

論理の演繹体系とカリー・ハワード対応にある．Monoidal t-norm論理に基づく変種と，Haskell

を用いた実装も扱う．
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Chapter 1

Introduction

1.1 Our Contributions

We propose hyper-lambda calculi. Instead of lambda terms in ordinary lambda cal-

culi, we use a finite sequence of lambda terms called hyper-lambda terms. We give

two such examples: one models synchronous send-receive communication (Chapter 2)

and the other models asynchronous waitfree read-write communication (Chapter 3).

The two hyper-lambda calculi are in Curry-Howard correspondence with hypersequent

formulation of logics: Abelian logic and Gödel-Dummett logic. Gödel-Dummett logic

is an intermediate logic. An intermediate logic is a logic between classical and intu-

itionistic logics, where ‘between’ is defined using the set-theoretic inclusion of valid

logical formulae of each logic. Abelian logic is a substructural logic.

Hosoi and Ono [82] declared that they chose to study intermediate logics in general

rather than studying specific intermediate logics. However, concrete results about spe-

cific subjects matter when the results contain new phenomena. This thesis is intended

to contain such concrete discoveries about specific intermediate and substructural log-

ics.

The more famous logic among the two, Gödel-Dummett logic, is a typical inter-

mediate logic known from 1950’s. Our method is the Curry-Howard correspondence,

also known from 1940’s. Our result is characterization of waitfreedom, a concept in

the theory of distributed computation extensively studied in 1990’s. Since both sides

of the correspondence are already known, the discovery is a replay of Curry’s surprise.

After developing a hyper-lambda calculus for Abelian logic, we found that the

resulting programming language is similar to a session type systems by Giunti and

Vasconcelos [62] although they were not aware of the underlying logic. The indepen-

dent discoveries constitute another instance of Curry–Howard correspondence “not by

1



design”.

We list our contributions from the most important:

1. developing a lambda calculus using a hypersequent calculus (Chapters 2, 3);

2. identifying the computational ability of Gödel-Dummett logic with waitfreedom

(Chapter 3);

3. encoding session types using a seemingly unknown axiom (φ ⊸ ψ) ⊗ (ψ ⊸ φ)

(which we call the Amida axiom) on top of the multiplicative additive fragment

of intuitionistic linear logic (Chapter 2),

4. discovery of a new proof system for Abelian logic (Chapter 2);

5. using conjunctive hypersequents for the first time (Chapter 2);

6. giving a typed lambda calculus for monoidal t-norm logic (Chapter 4); and

7. implementing a hyper-lambda calculus in Haskell (Chapter 5).

Our first contribution is the technique for our second contribution. We developed

a lambda calculus based on Avron’s hypersequents [8]. Avron [8] himself noted that

it would be important to develop a lambda calculus for hypersequents. The lambda

calculus relies on Avron’s hypersequents [8]. A hypersequent calculus is a variant of

the deduction system called sequent calculus. In sequent calculus, each step of a proof

tree concludes a sequent Γ ⊢ φ that consists of a finite sequence of logical formulae Γ

and a logical formula φ. The sequent Γ ⊢ φ is interpreted as an implication. In

hypersequent calculus, each step of a proof tree concludes a hypersequent instead of a

sequent. A hypersequent is a sequence of sequents delimited by , e.g., Γ ⊢ φ ∆ ⊢
ψ · · · . Also here, each component is interpreted as an implication, and then the

whole hypersequent is interpreted as the disjunction of all those implications. When

we interpret proofs as programs, we take the components as concurrent processes.

Following the original disjunctive interpretation of components, we regard the proof

tree as the guarantee of success of at least one process.

Our second contribution is the new approach of interpreting proofs in Gödel-

Dummett logic as concurrently executable programs for waitfree computation. Al-

though Avron [8] noticed his hypersequent calculus has something to do with concur-

rency (as the title of [8] contains the phrase “intermediate logics for concurrency”), it

was unknown that the computational interpretation of Gödel-Dummett logic coincides

2



with the degree of synchronization called waitfreedom. This discovery constitutes our

second contribution.

According to Sørensen and Urzyczyn [130, p.97], the Curry-Howard isomorphism [130]

was first made precise by Curry and Feys [37, 9E and 9F]. The intuitionistic propo-

sitional logic and the typed lambda calculus had been independently invented but

Curry discovered them to be the same thing. The “double discovery” (Wadler [146])

is considered to affirm the importance of the typed lambda calculi. In this thesis we

witness a replay of the “double discovery” with different casts: Gödel-Dummett logic

and the waitfreedom. Both of these were born in the early eras of their respective

academic disciplines: mathematical logic bore Gödel Dummett logic in 1950’s [43] and

the computer science bore waitfree computation in 1970’s [93]. Chapter 3 is about the

previously unknown connection between these two.

This is the first such computational interpretation for intermediate logics (Fig-

ure 1.1). Another significance of this contribution lies in giving interpretation of

nondeterminism in typed lambda calculi as scheduling of concurrent processes. In the

simply typed lambda calculus for intuitionistic propositional logic, all typed terms

have a unique normal form. However, in typed lambda calculi for classical propo-

sitional logic, there can be multiple normal forms unless we employ an evaluation

strategy or limit the set of reductions. The lack of unique normal forms in the classi-

cal propositional proofs has puzzled logicians for decades. The most famous example

is Lafont’s example [61, B.1.], which provides a way to equate any two proofs for the

same formula (if we equate proofs before and after cut-elimination). In computer sci-

ence, such a phenomenon is called nondeterminism caused by scheduling. Dynamic

behavior involves time. One simple notion of time is that of totally ordered events

where one event happens before the other or the other before the one. This sentence

is syntactically similar to Dummett’s axiom that states one proposition implies the

other or the other implies the one. We investigate whether this syntactic similarity is

reflected in the dynamic semantics of logics: namely, the lambda calculi.

Our third contribution is about encoding of session types into a linear type system.

Although the approach is similar to that of Caires and Pfenning [26] and Wadler [146],

the Amida calculus has an additional axiom so that it can type some processes that

Pfenning or Wadler’s type systems cannot.

Our fourth contribution is a side effect of the third contribution. The type sys-

tem we developed for our third contribution is an unknown proof system for Abelian

logic [27]. We moreover take the essence of the new proof system and obtain a kind

of proof nets called the Amida nets. Syntactically, the correct proof structure can
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Figure 1.1: The substructural and intermediate logics for which lambda calculi are found.

The underlying Hasse diagram of well-known substructural logics is taken from [57, p. 120]

with slight modifications. The names in boxes refer to people who developed lambda calculi

for these logics. GD stands for Gödel-Dummett logic, for which a lambda calculus will be

given in Chapter 3. Abelian stands for Abelian logic [27, 103, 104] discussed in Chapter 2.

MTL is monoidal t-norm logic [46], for which we give a hyper-lambda calculus in Chapter 4.

FLe is for the full Lambek calculus with exchange rule [57, p.86], which is also known as

the intuitionistic multiplicative additive fragment of linear logic (IMALL). MALL stands for

its classical version. For these fragments of linear logic, Abramsky [3] gave lambda calculi.

MALL− [59] is a fragment of MALL without additive units. FLew has weakening on top of

FLe. FLew is also known as intuitionistic affine logic. Affine logics lack contraction, which

causes exponential size increase during cut-elimination process. Asperti gave light affine

logic [7]. Terui [132] gave an affine typed lambda calculus for polynomial time computation.

R stands for relevance logic [139], for which Gabbay and de Queiroz [55] gave a lambda

calculus. Int stands for the intuitionistic propositional logic. The original Curry-Howard

isomorphism was found for this logic by Curry [36]. Cl stands for the classical propositional

logic. There is intensive research going on for the computational interpretation of classical

logic [35, 49, 66, 85, 115, 117, 127, 144, 145], of which Daisuke Kimura’s thesis [87] provides

an overview. Inconsistent stands for the logic of all logical formulae.
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be characterized with the Amida edges, which is similar to the structure of Amida

lottery. The previous chapters gave the computational interpretations of disjunctive

formulae like (φ ⊃ ψ) ∨ (ψ ⊃ φ) or (φ ⊸ ψ) ⊕ (ψ ⊸ φ). In this chapter, we try

replacing these disjunctions with conjunctions. In the former case, the change renders

the logic inconsistent; if we add the axiom (φ ⊃ ψ) ∧ (ψ ⊃ φ) to the intuitionistic

propositional logic, we can prove any formula. However in the latter case, the change

does not make the system meaningless. In Chapter 2, we introduce the axioms of

the form (φ⊸ ψ)⊗ (ψ ⊸ φ) on top of IMALL, intuitionistic multiplicative additive

linear logic. In essence, the axiom allows two processes to wait for one another and

then exchange information.

Our fifth contribution is the use of conjunctive hypersequents. Hypersequents have

been around since Avron [8], but in all cases, different components in a hypersequent

were interpreted disjunctively. In our formalization of Abelian logic in Chapter 2, we

use conjunctive hypersequents, where different components are interpreted conjunc-

tively. This is the first application of such conjunctive hypersequents.

Our sixth contribution is a typed lambda calculus for monoidal t-norm logic.

Monoidal t-norm logic (MTL) is the affine version of Gödel-Dummett logic. MTL

is considered by some to be the weakest fuzzy logic. Following our method of in-

terpreting Gödel-Dummett logic proofs as waitfree protocols, we interpret the MTL

proofs in our deduction system as asynchronously communicating processes. There we

employ the second-order formulation and perform parametricity arguments.

Our seventh contribution is implementing a hyper-lambda calculus in Haskell. By

implementing a hyper-lambda calculus for waitfreedom, we obtain a empirical justifi-

cation of our second contribution.

The content of Chapter 3 appears in a conference paper by the author [77] although

we have applied substantial modifications since then.

1.2 Preliminaries

We use “iff” as an abbreviation for “if and only if.” We use set-theoretic concepts such

as sets, relations and functions. For a set X, 2X denotes the powerset of X. X \ Y
denotes the subset of X that consists of the elements of X that are not elements of Y .

Everywhere, we consider a countably infinite set of logical formulae. A logic is a set

of logical formulae, thus, there are at most 2N different logics once the set of logical

formulae is fixed. Likewise, we consider at most countably many proofs and lambda

terms.
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We denote partial maps as graphs. For example, {0 7→ M, 1 7→ N} denotes a

partial map that maps 0 to M and 1 to N . We denote by dom(f) the domain of f ,

that is, the set of elements that are mapped to something. We also denote a partial

map as a sequence whose index set is the domain. For example, (yi)i∈I denotes the

partial map that maps i ∈ I to yi. For partial maps whose domains are disjoint, we

use ⊔ to denote the union. In other words, when f and g have disjoint domains, f ⊔ g
denotes the partial map that maps x to f(x) or g(x) when one of these is defined, or

otherwise to nothing.

We use BNF (Backus Naur Form) for giving inductive definitions for sets of finite

sequences of symbols.

Example 1.2.1 (An example of BNF) When we say we define formulae φ by BNF:

φ ::= ⊥ | p | (φ ⊃ φ)

where p is a propositional variable, we actually define a set Φ which is the smallest set

such that

• ⊥ is in Φ

• each propositional variable is in Φ and

• if φ and ψ are in Φ, then (φ ⊃ ψ) is in Φ;

and then we declare that we call elements of Φ formulae.

We take binary operators of the symbol ⊃ or ⊸, to be right associative. For

example, φ⊸ ψ⊸ θ is interpreted as φ⊸ (ψ⊸ θ).

1.3 History

We briefly review the history of mathematical logic and computer science to the extent

relevant to this thesis. Especially, we focus on the treatments of Dummett’s axiom (a ⊃
b)∨ (b ⊃ a) using the historical techniques. We confine ourselves to the developments

of propositional logic and ignore anything related to predicate logic or formalization

of mathematics.

1.3.1 Birth of Formal Logic

Implication is an important concept. One treatment of implications is called the

material implication. The material implication can be traced back at least to Frege’s
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Begriffsschrift [54] in 1879. There, in the section called “conditionality,” he begins by

establishing four cases [54, p. 13]:

1. A is affirmed and B is affirmed ;

2. A is affirmed and B is denied ;

3. A is denied and B is affirmed ;

4. A is denied and B is denied.

Then he defines a notation involving A and B

A

B

which “stands for the judgment that the third of these possibilities does not take place,

but one of the three other does1” [54, p. 14]. In the contemporary common mathemati-

cal terminology, this is equivalent to stating B implies A. It was Bertrand Russell who

called this implication the material implication, according to Edgington [44]. After

Brouwer’s notation, we still use ⊢ for judgments in our formal systems. The view of

logical formulae as graphical objects will be inherited to proof nets (Section 2.6).

1.3.2 Intuitionistic Propositional Logic

The intuitionistic propositional logic is a logic, that is, a set of logical formulae.

Although the name “intuitionistic” comes from Brouwer’s intuitionism, the original

claims of intuitionism are unrelated to this thesis. Brouwer was skeptical about the

value of formalization of mathematics and considered the studies of formal axioma-

tized logic as “mathematics of the second and third order” [141, p. 10]. Nonetheless,

Brouwer approved publication of his student Arend Heyting’s work on defining a set

of logical formulae as the intuitionistic propositional logic.

In 1930, Heyting [74] developed a deduction system for the intuitionistic propo-

sitional logic. The presentation is similar to the contemporary one except some no-

tational differences. The logical connectives {∧,∨,⊃,¬} are the same as today, the

first three binary and the last unary2. Logical formulae are constructed using these

connectives and the propositional variables. Although he sometimes used parentheses,

he still used more points around outer connectives (e.g. b ⊃· a ⊃ b indicates the left ⊃
1The emphasis is found in the English translation [54, p. 14].
2Though, in this thesis, we prefer having nullary ⊥ as a primitive and define ¬a as an abbreviation

for a ⊃ ⊥.
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is outer and the right one is inner). Instead we use parentheses. These formulae are

axioms3, i.e. assumed to be “correct formulae” [74]:

2.1. a ⊃ (a ∧ a)

2.11. (a ∧ b) ⊃ (b ∧ a)

2.12. (a ⊃ b) ⊃ (a ∧ c) ⊃ (b ∧ c)

2.13. ((a ⊃ b) ∧ (b ⊃ c)) ⊃ (a ⊃ c)

2.14. b ⊃ (a ⊃ b)

2.15. (a ∧ (a ⊃ b)) ⊃ b

3.1. a ⊃ (a ∨ b)

3.11. (a ∨ b) ⊃ (b ∨ a)

3.12. ((a ⊃ c) ∧ (b ⊃ c)) ⊃ ((a ∨ b) ⊃ c)

4.1. ¬a ⊃ (a ⊃ b)

4.11. ((a ⊃ b) ∧ (a ⊃ ¬b)) ⊃ ¬a .

There are more formulae given by the following rules [74]:

1.2. If a and b are correct formulas4, then a ∧ b is a correct formula.

1.3. If a and a ⊃ b are correct formulas, then b is a correct formula.

Following the intuitionists’ belief that “it is in principle impossible to set up a

system of formulas that would be equivalent to intuitionistic mathematics, for the

possibilities of thought cannot be reduced to a finite number of rules set up in ad-

vance” [74], Heyting did not pursue completeness results for the deduction system

except a remark mentioning Glivenko’s theorem [63, 64]. In other words, he did not

pursue arguing that his system is strong enough. On the contrary, he argued his sys-

tem is not too strong. He used what would be called algebraic semantics today in

order to show that each axiom is independent from the other axioms and that the

excluded middle is unprovable. For example, in order to refute the excluded middle,

he used the following tables [74]:

3The axioms with numberings are taken from Heyting [74].
4In quotes, we do not adjust the plural “formulas” and “formulae.”
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⊃ 0 1 2

0 0 0 0

1 1 0 1

2 2 0 0

∧ 0 1 2

0 0 1 2

1 1 1 1

2 2 1 2

∨ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 2

¬ 0 1 2

1 0 1
.

When we assign one of {0, 1, 2} to each propositional variable, we can extend the

assignment to all formulae using these tables. For binary operators, the columns stand

for the prearguments (the arguments on the left of the operator) and the rows stand

for the postarguments (the arguments on the right of the operator). For example, if we

assign 1 to a and 2 to b, a ⊃ b obtains value 0. Under any assignment to propositional

variables, all of Heyting’s axioms are assigned 0. Moreover, these tables have two

desirable properties:

1. 0 ∧ 0 = 0

2. 0 ⊃ a has the value 0 only when a = 0.

From these, all “correct formulae” in Heyting’s deduction system receive the value 0

under any assignments to propositional variables. However, if we assign 2 to a, (¬¬a) ⊃
a is assigned 2. Thus, we can conclude that ¬¬a ⊃ a is not a correct formula in

Heyting’s deduction system. Note that the natural order between natural numbers

plays no role here: it is not relevant that 2 is larger than 1 or 0 is less than 1 (in other

places he uses “all positive and negative whole numbers and 0”). Although Heyting

used natural numbers here, he already obtained an equivalent notion of what is called

Heyting algebra today5.

We can refute Dummett’s axiom (a ⊃ b) ∨ (b ⊃ a) in the same method. Indeed,

according to the tables below, when we assign 1 to a and 2 to b, (a ⊃ b) ∨ (b ⊃ a)

obtains 4, which is not 0. Since all correct formulae receive 0, (a ⊃ b) ∨ (b ⊃ a) is not

a correct formula.

⊃ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 0 2

3 3 3 3 0 3

4 4 0 0 0 0

∧ 0 1 2 3 4

0 0 1 2 3 4

1 1 1 3 3 1

2 2 3 2 3 2

3 3 3 3 3 3

4 4 1 2 3 4

∨ 0 1 2 3 4

0 0 0 0 0 0

1 0 1 4 1 4

2 0 4 2 2 4

3 0 1 2 3 4

4 0 4 4 4 4

¬ 0 1 2 3 4

3 3 3 0 3
5Although he did not explicitly say that he can define a partial order using the semantics for ⊃.
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Gödel

In 1932, Gödel published a short note [65] on intuitionistic propositional logic, where

he proved two theorems: that the intuitionistic propositional logic cannot be seen as a

many-valued logic and that there are infinitely many propositional logics between the

intuitionistic propositional logic and the “ordinary” (in today’s terminology, classical)

propositional logic. The second result is the first contribution to the realm of interme-

diate logics (according to Troelstra [47, p. 223]). For distinguishing those intermediate

logics and the intuitionistic propositional logic, he uses a formula Fn for each positive

natural number n:

Fn =
∨

1≤i<k≤n

((ai ⊃ ak) ∧ (ak ⊃ ai)) .

On an n-element chain, Fn+1 is valid while Fn might not be satisfied. As a result, no

Fn is valid in the intuitionistic propositional logic.

Among the formulae Fn, especially, the formula F2, which is (a1 ⊃ a2)∧ (a2 ⊃ a1),

brings contradiction into classical or intuitionistic logic. Moreover, any logic (closed

under modus ponens and substitution) having F2 as a theorem is inconsistent. In

Chapter 2 we investigate a logic with an axiom similar to F2: (φ ⊸ ψ) ⊗ (ψ ⊸ φ),

where ⊗ is the multiplicative conjunction and ⊸ is the linear implication. That logic

is consistent because it lacks weakening and contraction rules. Such attempt has been

made possible by the development of linear and substructural logics explained below

in 1.3.9.

In the final sentence, Gödel [65] states what is known as disjunction property

today6: “besides, the following holds with full generality: a formula of the form A∨B
can only be provable in H if either A or B is provable in H,” where H is Heyting’s

calculus. According to this statement, it is obvious that Dummett’s axiom (p ⊃
q) ∨ (q ⊃ p) is not provable.

Although Troelstra [47, p. 223] writes “the reasons for studying intermediate logics

are mainly technical,” we find that one typical intermediate logic, Gödel-Dummett

logic, has a computational interpretation that has already been known: waitfreedom.

The connection between Gödel-Dummett logic and waitfreedom will be treated in

Chapter 3.

6Disjunction property can be proved by soundness and completeness with respect to Kripke models.

There is another, syntactic technique called Aczel’s slash [136, Ch. 3. 5.7.].
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1.3.3 The Brouwer-Heyting-Kolmogorov Interpretation of Logical Con-

nectives

Kolmogorov’s view of implication as problem reduction

Thanks to Heyting [74], we have a formal characterization of the intuitionistic impli-

cation. In 1932, Kolmogorov [91] introduced a “calculus of problems” that coincides

with the intuitionistic propositional logic. In the calculus of problems, the logical

connectives ∨,∧,⊃ connect problems together to form another problem.

If a and b are two problems, then a ∧ b designates the problem “to solve

both problems a and b,” while a ∨ b designates the problem “to solve at

least one of the problems a and b.” Furthermore, a ⊃ b is the problem

“to solve b provided that the solution for a is given” or, equivalently, “to

reduce the solution of b to the solution of a.” . . .¬a designates the problem

“to obtain a contradiction provided that the solution of a is given.” [91,

p. 329]

Here, the intuitionistic implication is explained as reduction of problems. He continues

to validate Heyting [74]’s axioms, and the deduction rules with respect to the problem

calculus interpretation.

Furthermore, he finds a reason for not including the law of excluded middle a ∨
¬a by saying “one must possess a general method either to prove or to reduce to a

contradiction any proposition. If our reader does not consider himself to be omniscient,

he will probably determine that the formula cannot be found on the list of problems

solved by him” [91]. This argument is enough to reject Dummett’s axiom (a ⊃ b)∨(b ⊃
a) because one must possess a general method, given any two problems, to determine

whether one problem can be reduced to the other or the other way around. For the

computational meaning of the law of excluded middle, we have to wait until 1990’s.

And the computational interpretation of Dummett’s axiom is presented in Chapter 3

in this thesis.

Realization as Typed Lambda Terms

One formulation of the Brouwer-Heyting-Kolmogorov (BHK) interpretation reads: “a

proof of the implication φ ⊃ ψ is a construction which permits us to transform any

proof of φ into a proof of ψ” [136, Ch. 1, 3.1.]. The BHK interpretation does not

specify what is a proof or what kind of transformation witnesses implication.
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1.3.4 Natural Deduction and Sequent Calculus

Gentzen’s Deduction Systems

The deduction system of Heyting [74] characterizes what is still called intuitionis-

tic propositional logic today. However, Heyting’s system has one drawback, which

is shared with almost all7 other Hilbert-style derivation systems: in order to prove a

logical formula, sometimes we have to mention a larger, more complicated formula. Ac-

tually, there are alternative formulations of intuitionistic (and classical) propositional

logic by Gentzen [58] where we only have to mention subformulae of the formula be-

ing proven. The desirable property is called the subformula property. The two proof

systems are called natural deduction and sequent calculus.

In contrast to the system of Heyting [74] where a proof yields a finite set of “cor-

rect formulae,” a proof in natural deduction and sequent calculus yields a pair of

assumptions and conclusions. Gentzen [58] used the form

A1, . . . ,Aµ −→ B

as a sequent. We will use ⊢ instead of −→. In any case, a sequent stands for the

implication: the conjunction of Ai’s implies B.

In natural deduction, the assumptions and conclusions are presented vertically. For

example,

A ∧B
B

has a single assumption A ∧ B and a conclusion B. The same content can be shown

as

A ∧B ⊢ A ∧B
A ∧B ⊢ B

.

The horizontal line shows an application of an inference rule8. The sequent on top of

the inference rule is called the assumption of the rule and the sequent below is called

the conclusion of the rule. Natural deduction has introduction rules and elimination

rules for each logical connectives. An introduction rule of a connective contains the

connective in the conclusion but not in the assumptions (if any). An elimination

rule of a connective contains the connective in one of the assumptions but not in the

conclusion. For example, the introduction and elimination rules for ∧ (conjunction9)

is as follows:

7Even Hilbert-style deduction systems can avoid this drawback if all theorems are axioms.
8In [58], an inference rule is called an inference figure schema.
9Gentzen [58] and Prawitz [119] used &.
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Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ

Γ ⊢ φ ∧ ψ
Γ ⊢ φ

Γ ⊢ φ ∧ ψ
Γ ⊢ ψ

.

These rules are the meaning of conjunction ∧. In sequent calculus, the introduction

rules stay the same but called the right rules because they operate on the right hand

side of sequents. The elimination rules are rewritten so that they operate on the left

side of sequents and they are called the left rules.

In Chapter 2, we will use a hypersequent calculus for presenting Abelian logic.

In Chapter 3, we will use hypersequent-style natural deduction for presenting Gödel-

Dummett logic.

Prawitz’s Analysis of Natural Deduction

Gentzen [58] did not prove the subformula property immediately for natural deduc-

tion. He proved the subformula property for sequent calculus first and then after

that obtained the property of natural deduction as a corollary. On the other hand,

Prawitz [119] studied natural deduction in itself.

Inversion principle states that an occurrence of a logical connective in a proof

can be removed when the connective is introduced by an introduction rule, and then

immediately below, eliminated by an elimination rule. A logical formula occurrence

containing such a connective is called a maximal formula. For example, for conjunction,

a natural deduction derivation [119, p. 36] can be reduced

from

Σ0

A

Σ1

B∧I
A ∧B∧E
A

to
Σ0

A

where Σ0 and Σ1 stand for derivations with conclusions A and B respectively. In the

reduction, the occurrence of ∧ is removed. The same holds for other logical connectives;

thus we can remove maximal formulae.

Further, Prawitz [119, Chapter IV] formulated a weaker notion called maximal

segments. Above, in the definition of maximal formulae, the elimination rule must

be placed immediately below the corresponding introduction rule. Prawitz allowed

other inference lines between the introduction and elimination rules and defined max-

imal segments10. A derivation without maximal segments is called normal. Prawitz

proved the existence of a normal derivation of Γ ⊢ A given any derivation of Γ ⊢ A.

10A maximal segment can contain many occurrences of the same formula without being influenced

by any inference rules. Such “syntactic bureaucracy” can be removed by proof nets. See Section 2.6

for an example.
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Prawitz [119] treated first-order, second-order and modal logics but we do not elabo-

rate.

The reductions and the normal form coincide with the β-reduction and the normal

form in the typed lambda calculi under Curry-Howard isomorphism.

Prior’s Tonk

Prior [120] invented a logical connective called tonk.

φ

φ tonk ψ
ψ

φ tonk ψ
φ tonk ψ

φ
φ tonk ψ

ψ

From this, inversion principle requires this reduction:

from

φ

φ tonk ψ

ψ
to

φ

ψ
.

The reduct is considered nonsense because if there are any theorems all formulae must

be theorems. This is an argument refuting the tonk operator. However, in Chapter 2,

we pursue the possibility of compensating the nonsense by the dual nonsense, namely:

φ ψ

ψ φ
.

Prior’s paper is titled “the runabout inference-ticket.” In Chapter 2, we are going to

consider the round-trip inference-ticket.

1.3.5 Curry-Howard Isomorphism

At the core of computer science lies the interplay of static formalism and dynamic

behavior. We can find examples in typed lambda calculi, where static formalism of

type derivations interacts with dynamic behavior of lambda terms. Type derivations

are static objects associating lambda terms to types. The reduction relation on terms

gives dynamics, defining which term reduces to which. Static type derivations can

guarantee dynamic properties of programs such as strong normalization [61] and more

specific properties using parametricity arguments [124].

The Curry-Howard isomorphism is originally a correspondence between intuition-

istic propositional logic proofs and typed lambda terms, but the name combination

Curry-Howard has obtained a more general meaning spanning over the correspondence

between proofs and programs in general. The phrase “computational interpretation”

is most often used for the Curry-Howard isomorphism [3, 18, 99, 118]. Sørensen and

Urzyczyn [130] recently presented a comprehensive reference book on the topic, con-

taining lots of historical and bibliographical remarks.
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Curry’s Discovery

The Curry-Howard isomorphism is originally the correspondence of the typed lambda

terms and the proofs of the implicational fragment11 of the intuitionistic propositional

logic. According to [130], the first explicit statement of the correspondence appears

in the retiring presidential address to the Association for Symbolic Logic titled “the

combinatory foundations of mathematical logic” [36]. The footnote 28 of [36] reads:

Note the similarity of the postulates for F and those for P . If in any of

the former postulates we change F to P and drop the combinator we have

the corresponding postulate for P

where a postulate for F is something like ⊢ FXY f which represents the statement that

f belongs to the class of functions from X to Y ; and P is the implicational fragment

of the intuitionistic propositional logic. On the same page, there is Postulate (PC):

⊢ (β ⊃ (α ⊃ γ)) ⊃ (α ⊃ (β ⊃ γ))

and the corresponding Postulate (FC):

⊢ F (Fβ(Fαγ))(Fα(Fβγ))C

where C is λ3xyz · xzy and the notation Fαβ shows the functional character of a

function from α to β. The postulate (FC) is said to state the functional character

of C. In this thesis, we use sequent style natural deduction system so that these

postulates can be derived as

x :β ⊃ (α ⊃ γ) ⊢ x :β ⊃ (α ⊃ γ) z :β ⊢ z :β

x :β ⊃ (α ⊃ γ), z :β ⊢ xz :α ⊃ γ y :α ⊢ y :α

x :β ⊃ (α ⊃ γ), z :β, y :α ⊢ xzy :γ

x :β ⊃ (α ⊃ γ), y :α ⊢ λz.xzy :β ⊃ γ
x :β ⊃ (α ⊃ γ) ⊢ λy.λz.xzy :α ⊃ (β ⊃ γ)

⊢ λx.λy.λz.xzy : (β ⊃ (α ⊃ γ)) ⊃ (α ⊃ (β ⊃ γ))

.

Indeed, the last sequent associates the term λx.λy.λz.xzy, which is the combinator C,

to the logical formula (β ⊃ (α ⊃ γ)) ⊃ (α ⊃ (β ⊃ γ)). Throughout this thesis, we use

colons : to combine terms with types.

Henceforth, we do not give deduction systems of a logic and typing rules for a typed

lambda calculi separately because the former can be obtained from the latter by this

11The implicational fragment of a logic can be defined by taking formulae only containing implica-

tions but no other connectives.
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correspondence. The precise statements for the correspondence appear in Curry and

Feys [37, 9E], a section titled “analogies with propositional algebra.”

Curry-Howard isomorphism provides one realization of BHK interpretation: proofs

as lambda terms where the introduction rule of implication is realized as the lambda

abstraction and the elimination rule of implication is realized as the application of

lambda terms. This encoding has a desirable property: the reductions in the lambda

calculus correspond to the reductions of proofs that remove detours. For example,

suppose a natural deduction proof introduces an implication and then immediately

eliminates the implication. This proof can be encoded as a lambda term whose outer-

most structure is a β-redex: (λx.M)N . The result of the β-reduction M [N/x] encodes

a proof tree using the same assumptions as the original and concluding the same for-

mula as the original, yet without the aforementioned detour. A proof of implication

allows transformation of proofs by means of substitution. The encoding of proofs as

lambda terms is traditionally called the Curry-Howard isomorphism.

The material implications are justified in classical propositional logic. The latter

view on implication, provided by BHK-interpretation, is most naturally embodied in

the situation of intuitionistic propositional logic. The last century saw their general-

ization called intermediate logics [137] (or superintuitionistic logics), of which a typical

example is Gödel-Dummett logic. In this thesis we investigate the Curry-Howard iso-

morphism for Gödel-Dummett logic. The Gödel-Dummett logic validates formulae of

the form (φ ⊃ ψ) ∨ (ψ ⊃ φ), which is known as Dummett’s axiom. We add a con-

struct to the simply typed lambda calculus that witnesses Dummett’s axiom. After

the intermediate logics, the generalization went further to substructural logics [57],

which contains all the intermediate logics as well as the (intuitionistic) multiplicative

additive fragment of linear logic. In the later chapters, we make a typing system that

lacks contraction and weakening in Chapters 2 and 4.

Application to Programming Languages

Landin [94] noticed some similarities between ALGOL 60 syntax and the untyped

lambda calculus. Since then, many programming languages came out of the Curry-

Howard isomorphism: most notably so-called the ML family languages like Standard

ML [108], OCaml [109], SML# [114], Haskell [98], F# [105] and so on.

However, none has employed Dummett axiom (φ ⊃ ψ) ∨ (ψ ⊃ φ) or the Amida

axiom12 (φ⊸ ψ)⊗ (ψ⊸ φ) as a type for a language primitive.

12For explanation of ⊗ and ⊸, see 1.3.9.
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1.3.6 Gödel-Dummett Logic

Dummett’s Axiomatization

Dummett [43] considers a semantics on {0, 1, 2, . . . , ω} where ∧ is interpreted as max-

imum, ∨ as minimum, ⊥ as ω and implication as a function ⊃̂ where13

x⊃̂y =

0 if x ≥ y

y if x < y
.

He axiomatized the logic by adding (p ⊃ q) ∨ (q ⊃ p) on top of the axioms for the

intuitionistic propositional logic. Thomas [133] axiomatized the logic on n-element

chains using Dummett’s axiom and the formula Fn+1 that appeared in Gödel [65],

which is rewritten using only implications but no disjunction or conjunction.

Sonobe’s Gentzen-Style Calculus

Sonobe [129] presented a sequent calculus for Gödel-Dummett logic and proved cut-

elimination theorem for it. On top of intuitionistic propositional logic, there is only

one rule. However, the number of assumptions of the rule is not constantly bounded.

The rule can have assumptions as many as any natural number. After looking at

a hyper-lambda calculus λ-GD in Chapter 3, we can translate a proof in Sonobe’s

system into a λ-GD typing derivation and then find the computational content of the

original proof. However, the author has never seen an attempt of determining the

computational interpretation of Sonobe’s cut-elimination.

Avron’s Hypersequents

Avron [8] invented the hypersequent calculus. A hypersequent is a finite sequence of

sequents:

Γ0 ⊢ φ0 Γ1 ⊢ φ1 · · · Γn ⊢ φn (n ≥ 0) .

We use metavariable H for a hypersequent. For Gödel-Dummett logic, Avron [8]

formulated the communication rule

H0 Γ′0,Γ0 ⊢ φ0 H1 Γ′1,Γ1 ⊢ φ1

H0 H1 Γ′1,Γ0 ⊢ φ0 Γ′0,Γ1 ⊢ φ1

.

The rule contains no logical connectives. That means in order to apply the rule, we

do not have to pattern-match formulae except comparing whether two formulae are

identical or not. Such a rule is called a structural rule as opposed to a logical rule.
13To be precise, Dummett did not use absurdity ⊥ but negation ¬ although they are interdefinable

in existence of implication ⊃ and conjunction ∧.

17



For the hypersequent calculus with the communication rule, Avron [8] showed cut-

elimination theorem. He asked what is the computational content of Gödel-Dummett

and other intermediate logics (see the beginning of Chapter 3 for quotation).

1.3.7 Waitfreedom

A waitfree protocol over shared memory [71] assigns a program to each process within

the restriction that no process waits for another process. Some tasks can be solved by

a well-chosen waitfree protocol while the others cannot. For example, it is waitfreely

impossible for each processes to attain the input values of the other processes. On the

other hand, it is waitfreely possible for at least one of the processes to attain the input

values of the other processes.

Herlihy and Shavit [72] characterized waitfree computation using simplicial topol-

ogy. Using their characterization, Gafni and Koutsoupias [56] showed that it is unde-

cidable whether a task is waitfreely solvable or not.

1.3.8 Intermediate (Superintuitionistic) Logics

In this thesis, a logic is a set of logical formulae that is closed under substitution and

modus ponens14. Elements of a logic are called theorems. The substitution-closedness

means that if φ is a theorem, φ[ψ/X] (i.e. the logical formula obtained by replacing all

occurrences of X with ψ) is also a theorem. By modus ponens closedness, if φ ⊃ ψ (or

φ⊸ ψ) and φ are theorems, ψ is also a theorem. An intermediate logic is a consistent

logic that contains the intuitionistic propositional logic. A logic is consistent when it

does not contain all logical formulae.

Early intermediate logicians seem to have focused on algebraic aspects on inter-

mediate logics in general. Troelstra [47, p. 223] writes “the reasons for studying

intermediate logics are mainly technical.” In a survey paper, Hosoi and Ono [82] say:

The study of intermediate logics seems to have two aspects: One is to study

particularities of a certain logic, and the other is to take the intermediate

logics as a whole and to study the relations between the logics or some

structures recognized in that system. We think that an intermediate logic

is simply an algebraic system bearing some structural resemblance to the

logic in the usual sense and that it is not a logic on which some kind of

mathematics can or must be constructed. So, the second approach seems to

14There are, however, logics not closed for substitution such as dynamic epistemic logic [140] and

inquisitive logic [32]. Thus in general it would be fair to say that a logic is a set of logical formulae.
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be reasonable for us, and we have been mostly working with the intension

of grasping the algebraic structure of the whole system of the intermediate

logic15.

Their approach has been successful. One spectacular result by Maksimova [96] states

that there are only seven consistent superintuitionistic logics with the Craig interpo-

lation property. The Craig interpolation property holds for a logic L iff α ⊃ β ∈ L
implies existence of a formula χ such that α ⊃ χ, χ ⊃ β ∈ L and χ only contains

propositional variables that appear in both α and β. The seven logics include the in-

tuitionistic propositional logic, the logic of the weak excluded middle, Gödel-Dummett

logic and classical logic. Although the Craig interpolation property is useful for pro-

gram verification [45, 100, 138], the above result itself is only of theoretical interest.

We take the first approach described by Hosoi and Ono: namely, studying partic-

ular logics instead of intermediate logics in general. This thesis is about particular

logics: Gödel-Dummett logic and Abelian logic. We claim that these logics can be

used for developing programming languages. The Curry-Howard isomorphism justi-

fies our investigation of these particular logics. Gödel-Dummett logic is one typical

intermediate logic. Abelian logic, on the other hand, is not an intermediate logic be-

cause it lacks structural rules called weakening and contraction. Such logics are called

substructural logics, whose history will be followed in 1.3.9.

We have to note that there have been attempts to apply some intermediate logics

for mathematical reasoning, especially the truth theory. Hájek et al. [68] tried to use

 Lukasiewicz logic in order to resolve the liar’s paradox. The idea is to assign the truth

value 0.5 to the sentence “this sentence is false.” When a sentence has the truth value x,

a sentence that claims falsehood of the first sentence should have the truth value 1−x.

When the first and second sentences are identical, it should have the truth value 0.5.

Using  Lukasiewicz logic, Hájek et al. [68] worked in Peano arithmetic and found a

consistent formulation (in the sense there exists a model to each finite subtheory).

However, in the case of axiomatic set theory with comprehension, Hájek [67] showed

that having induction over natural numbers is contradictory16.

Computationally inclined research on intermediate logics can be found in proof

searching. The most typical intermediate logic, Gödel-Dummett logic has many proof

searching implementations. Currently, the fastest solver the author is aware of is

Fiorino’s EPDL [50]. Fiorino benchmarked his and other implementations on a prob-

lem set for intuitionistic logic called ILTP library [121]. Related to proof searching,

15Emphases by the authors of the original paper.
16Yatabe [148] found an easier proof of this.
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Fermüller [48] gave a game semantics for Gödel-Dummett logic, which is based on

Lorenzen game [130] and essentially proof searching bottom-to-up. The game con-

tains concurrent subgames but he gave no explicit mentions on waitfree computation.

On the other approach of proof reduction, there have been no lambda calculi or

programming languages based on intermediate logics, despite the fact cut-elimination

results are obtained by Sonobe [129] and Avron [8].

1.3.9 Substructural Logics

In sequent calculus or the sequent style natural deduction, when we apply most rules,

we need to make pattern matching on the logical formulae. For example, in order to

apply this ∧L rule of sequent calculus for classical logic,

Γ, φ, ψ ⊢ ∆
∧L

Γ, φ ∧ ψ ⊢ ∆

we have to find a formula on the left hand side sequent whose top connective is ∧.

Today, the logics without some structural rules are called substructural logics, the

smallest of which is called the full Lambek calculus (FL). There have been intensive

studies on substructural logics mainly from the algebraic approach [57].

Throughout this thesis, we consider only logics with the structural rule called

exchange. The exchange rule allows permutation of formulae in contexts. The well-

known substructural logics with the exchange rule are shown in Figure 1.1.

BCI and BCK Logics

When we add exchange rule to FL, we obtain BCI logic. Further, when we add

weakening to BCI logic, we obtain BCK logic [116]. BCK logic has three axioms

named after well-known combinators. Indeed, the logic can be characterized as the

smallest set closed under modus ponens and substitution that contains

(B) (φ ⊃ ψ) ⊃ ((χ ⊃ φ) ⊃ (χ ⊃ ψ))

(C) (φ ⊃ (ψ ⊃ χ)) ⊃ (ψ ⊃ (φ ⊃ χ)) and

(K) φ ⊃ (ψ ⊃ φ) .

From these, by modus ponens and substitution, (I) φ ⊃ φ follows, but (W) (ψ ⊃ (ψ ⊃
φ)) ⊃ (ψ ⊃ φ) does not follow17. Thus, the left hand side contraction is not admissible

in the sequent calculus for the BCK logic. A rule

17Here, the capital alphabet W is a name of a combinator. Elsewhere, W stands for a structural

rule weakening.

20



S
S ′

is admissible iff E ′ is derivable whenever E is.

Linear Logics

Girard found the linear logic [59]. To explain this logic, let us present two formulations

of the ∧-right rule in the sequent calculus of intuitionistic propositional logic:

Γ ⊢ φ ∆ ⊢ ψ
Γ,∆ ⊢ φ ∧ ψ

Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ

Using one of these rule, the other can be defined as a macro (an abbreviation for

a longer construction) because, from bottom to top, we can copy (contraction) or

remove (weakening) formulae in contexts. However if we do not allow such structural

rules, the two different formulations characterize different conjunctions. The left one

is called multiplicative conjunction and the right one is called additive conjunction.

Γ ⊢ φ ∆ ⊢ ψ
Γ,∆ ⊢ φ⊗ ψ

Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ& ψ

In general, a binary operator is called multiplicative (resp. additive) when the right

rule in sequent calculus (or introduction rule in natural deduction) for the operator

splits the context (resp. copies the whole context in all branches). The example above

shows how the additive and multiplicative conjunctions are different. The words mul-

tiplicative and additive are originally adjectives but we sometimes use them as nouns:

“multiplicatives” for the multiplicative operators and “additives” for the additive op-

erators.

Additive implication can be defined [135, Ch. 4] using additive disjunction, but the

multiplicative implication ⊸ has a more important role because our interpretation of

⊢ symbol in a sequent is the multiplicative implication. This is shown by the following

invertible18 rule:

Γ, φ ⊢ ψ
Γ ⊢ φ⊸ ψ

.

In the intuitionistic linear logic, the right side of a sequent can only contain at most

one formula. Abramsky [3] gave computational interpretations for the intuitionistic

linear logic and the classical linear logic. Since we will extend his linear lambda calculus

in Chapter 2, we are going to elaborate on Abramsky’s lambda calculus there.

18When a rule is changed upside-down and stay admissible, the rule is called invertible.
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Abelian Logic

Meyer and Slaney [104] and Casari [27] found Abelian logic independently. Meyer

and Slaney’s motivation was bringing the theory of relevant logics closer to group

theory. Casari [27] mentions arguments about comparative propositions in treated in

Aristotle’s Topics:

x is more (less, as much as) A than y

and so on [27, p. 161]. One semantics of Abelian logic interprets a logical formula

as an element of a lattice-ordered Abelian group [57, 3.4.2.]. There, the interpreta-

tion of 1 is the unit; the interpretation of ⊗ is the operation of the group; and the

interpretation of · ⊸ 1 is the inverse element. Abelian logic is an important exam-

ple in algebraic semantics of logics because Abelian logic is complete with respect to

the lattice-ordered group Z of integers [57, pp. 107-108]. Metcalfe et al. [103] gave a

deduction system for Abelian logic, which “almost” [103, after Definition 8] has the

subformula property. Metcalfe [102] gave a hypersequent calculus for Abelian logic and

proves cut-elimination [102, Theorem 5] for the hypersequent calculus. In Chapter 2,

we provide a lambda-calculus based on another hypersequent calculus. Our formula-

tion use conjunctive hypersequents, which allow us to encode a process calculus in our

hyper-lambda calculus in a straightforward way (Section 2.4).

Proof Nets and the Amida Lotteries

Proof nets are graphical representation of proofs. Some different sequent calculus

proofs are translated into the same proof net because the original proofs are only

different in cosmetic ways (like which rule to apply first and exchanges of elements

in a sequent). The succinct representation comes with the cost of specifying the

correctness condition for such graphical structures. There have been intensive studies

on proof nets, which started with Girard [59] and Danos and Regnier [39].

We are going to treat the intuitionistic version of multiplicative linear logic, and

its proof nets are based on the Amida lotteries. The Amida lottery is a traditional

way to generate permutations on a set in an obfuscated way. Japanese schoolchildren

use the Amida lotteries for assigning seats, jobs, teams and so on to classmates. The

diagram defines a permutation. From a top end, one can find the counterpart by

following the vertical line, but one has to cross the bridge whenever one finds one and

then after crossing the bridge, one has to go down the vertical line. An example is

given in Figure 1.2.
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Nozomi Ken Yuko Taro

watering

flowers

clearing

blackboards

feeding

Hamsters

chairing

meetings

Figure 1.2: An example of Amida lotteries. Nozomi clears blackboards; Ken waters

flowers; Yuko chairs meetings; and Taro feeds Hamsters.

1.4 To the Next Chapters

Each chapter can be read independently. Chapter 2 treats a synchronous hyper-lambda

calculus and Chapter 3 deals with an asynchronous one. The operational semantics is

simpler in the synchronous case while the type system is more exotic in the synchronous

case. The asynchronous one is apt for shared-memory implementation. Chapter 4

treats another asynchronous hyper-lambda calculus based on monoidal t-norm logic.

In this chapter, we analyze the prelinearity axiom (φ ⊸ ψ) ⊕ (ψ ⊸ φ) using the

parametricity argument. Chapter 5 implements a hyper-lambda calculus similar to

that in Chapter 3 using Haskell.
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Chapter 2

A Synchronous Hyper-Lambda Calculus

2.1 Introduction

There is a PhD student who says:

I bought a pair of wooden shoes in Amsterdam. I put a coin in the left

and a key in the right. Next morning, I found those objects in the opposite

shoes: the key in the left and the coin in the right. The same experiments

succeeded even if the shoes were put in distance, one in university and one

at home. After every night, I found arbitrary objects swapped in the pair

of wooden shoes. This fast transfer method might have helped merchants

of the Dutch East India Company (VOC) to swap objects between Asia

and Europe.

We do not claim existence of such shoes, but propose a similar programming abstrac-

tion in the context of typed lambda calculi.

We propose a way to unify ML-style programming languages [98, 108] and π-

calculus [107]. “Well-typed expressions do not go wrong,” said Milner [106]. However,

when communication is involved, how to maintain the principle is not yet settled. For

example, Haskell, which is an ML-style programming language, allows different threads

to communicate using a kind of shared data store called an MVar mv of type MVar a,

with commands putMVar mv of type a -> IO () and takeMVar mv of type IO a1.

The former command consumes an argument of type a and the consumed argument

appears from the latter command. However, if programmers make mistakes, these

commands can cause a deadlock during execution even after the program passes type

1The arrow -> shows implication ⊃ and the tuple () shows the unit type 1. In Haskell, a command

of type type a -> IO b takes an input of type a and produces a result of type b during execution.
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checking. This is because the type system of Haskell allows programmers to use only

one of the sender and the receiver. Fundamentally, this is because the type system of

Haskell is based on intuitionistic logic, which allows throwing away proofs.

As a remedy, we invent a typed lambda calculus where the user is forced to use

both sending and receiving primitives. For that we use the technique of linear types.

Linear types are refinements of intuitionistic types. Differently from intuitionistic

types, linear types can specify a portion of program to be used just once.

Linear types are used by Wadler [146] and Caires and Pfenning [26] to encode

session types, but our type system can type processes that Wadler and Pfenning’s

system cannot.

As intuitionistic types are based on intuitionistic propositional logic, linear types

are based on linear logic. From the intuitionistic linear logic, the only addition is the

Amida axiom (φ ⊸ ψ) ⊗ (ψ ⊸ φ). We will see that the resulting logic is identical

to Abelian logic [27] up to provability of formulae. In the Amida calculus, we can

express π-calculus-like processes as macros. Our initial motivation was just studying

the axiom (φ ⊸ ψ) ⊗ (ψ ⊸ φ)2. From the viewpoint of typed lambda calculi, a

natural way to add the axiom (φ ⊸ ψ) ⊗ (ψ ⊸ φ) is to add a pair of primitives c

and c̄ so that · · · ct · · · c̄u · · · reduces to · · ·u · · · t · · · : in words, c returns c̄’s argument

and vice versa. We can obtain the send-receive communication when we specialize

the axiom as (φ ⊸ 1) ⊗ (1 ⊸ φ); the left hand side c of type φ⊸ 1 is the sending

primitive and the right hand side c̄ of type 1⊸ φ is the receiving primitive. The

sending primitive consumes a data of type φ and produces a meaningless3 data of unit

type 1. The receiving primitive takes the meaningless data of type 1 and produces a

data of type φ.

Later in this chapter, we address some questions.

• Due to addition of the Amida axiom, is it the case that every type is inhabited4?

In other words, is the resulting type system inconsistent? Our answer is no

(Theorem 2.5.2).

• Can we generalize the channels to serve more complicated protocols than one-

shot send-receive communication? Our answer is yes (Section 2.4).

2Takeuti Izumi asked about conjunctions after the author talked about (φ⊸ ψ)⊕ (ψ⊸ φ).
3As we will see, since 1 is a provable formula in Abelian logic, the Amida calculus is equipped

with a way to obtain a data of type 1 for free.
4A type φ is inhabited iff there is a closed term t with ⊢ t :φ derivable using the derivation rules

in Figure 2.1.
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• Can we implement process calculi and session types using these communication

primitives? Our answer is yes (Section 2.4).

After following these practical questions, we proceed to developing a proof net

structure for the multiplicative fragment of the resulting logic (Section 2.6). Our

solution involves the structure of “the Amida lottery,” which is a traditional Japanese

way of making arbitrary permutations.

2.2 Definitions

2.2.1 Types

We assume a countably infinite set of propositional variables, for which we use letters

X,Y and so on. We define a type φ by BNF:

φ ::= 1 | X | φ⊗ φ | φ⊸ φ | φ⊕ φ | φ& φ .

A formula is a type. As the typing rules (Figure 2.1) reveal, ⊗ is the multiplicative

conjunction, ⊸ is the multiplicative implication, ⊕ is the additive disjunction and &

is the additive conjunction.

2.2.2 Terms and Free Variables

We assume countably infinitely many variables x, y, z, . . .. Before defining terms, fol-

lowing Abramsky’s linear lambda calculus LF [3], we define patterns binding sets of

variables:

• ∗ is a pattern binding ∅,

• ⟨x, ⟩ and ⟨ , x⟩ are patterns binding {x},

• x⊗ y is a pattern binding {x, y}.

All patterns are from Abramsky’s LF [3]. Using patterns, we inductively define a

term t with free variables S. We assume countably infinitely many channels with

involution satisfying c̄ ̸= c and ¯̄c = c.

• ∗ is a term with free variables ∅,

• a variable x is a term with free variables {x},

• if t is a term with free variables S, u is a term with free variables S′, and moreover

S and S′ are disjoint, then t⊗ u and tu are terms with free variables S ∪ S′,
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• if t and u are terms with free variables S, then ⟨t, u⟩ is a term with free vari-

ables S,

• if t is a term with free variables S, then inl(t) and inr(t) are terms with free

variables S,

• if t is a term with free variables S ∪ {x} and x is not in S, then λx.t is a term

with free variables S,

• if t is a term with free variables S, p is a pattern binding S′, u is a term with

free variables S′∪S′′ and equalities S∩S′′ = S′∩S′′ = ∅ hold, then, let t be p inu

is a term with free variables S ∪ S′′,

• if t is a term with free variables S, u is a term with free variables S′′ ∪ {x}, v is

a term with free variables S′′ ∪ {y}, x, y /∈ S′′ and S ∩ S′′ = ∅ hold, then

match t of inl(x).u/inr(y).v

is a term with free variables S ∪ S′′, and

• if t is a term with free variables S, then ct is also a term with free variables S

for any channel c.

Only the last clause is original, introducing channels, which are our communication

primitives. Note that a term with free variables S is not a term with free variables S′

when S and S′ are different (even if S is a subset of S′). In other words, the set of

free variables FV (t) is uniquely defined for a term t. We introduce an abbreviation

ign ϵ in t ≡ t

ign s0,
−→s in t ≡ let s0 be ∗ in (ign−→s in t)

inductively for a sequence of terms −→s . Here ϵ stands for the empty sequence. The

symbol ign is intended to be pronounced “ignore.”

2.2.3 Typing Derivations

On top of Abramsky’s linear lambda calculus LF [3], we add a rule to make a closed

term of type (φ⊸ ψ) ⊗ (ψ ⊸ φ). A context Γ is a possibly empty sequence of vari-

ables associated with types where the same variable appears at most once. A context

x :X, y :Y is allowed, but x :X,x :Y or x :X,x :X is not a context. A hypersequent is

inductively defined as

O ::= ϵ | (Γ ⊢ t :φ O)

27



where Γ is a context. Each Γ ⊢ t :φ is called a component of a hypersequent. In

this chapter, we interpret the components conjunctively. Differently from the previous

papers [8–10, 12], here, the hypersequent Γ ⊢ φ ∆ ⊢ ψ is interpreted as the

conjunction of components: (
⊗

Γ ⊸ φ) ⊗ (
⊗

∆ ⊸ ψ) where
⊗

Γ stands for the

⊗-conjunction of elements of Γ. The conjunctive treatment is our original invention,

and finding an application of such a treatment is one of our contributions5. We name

this technique the conjunctive hypersequent .

The typing rules of the Amida calculus are in Figure 2.1. When ⊢ t :φ is derivable,

the type φ is inhabited .

Example 2.2.1 (Derivation of the Amida axiom) The type (φ⊸ ψ)⊗ (ψ⊸ φ)

is inhabited by the following derivation.

Ax
x :φ ⊢ x :φ

Ax
y :ψ ⊢ y :ψ

Merge
x :φ ⊢ x :φ y :ψ ⊢ y :ψ

Sync
x :φ ⊢ cx :ψ y :ψ ⊢ c̄y :φ

⊸R
⊢ λx.cx :φ⊸ ψ y :ψ ⊢ c̄y :φ

⊸R
⊢ λx.cx :φ⊸ ψ ⊢ λy.c̄y :φ⊸ φ

⊗R ⊢ (λx.cx)⊗ (λy.c̄y) : (φ⊸ ψ)⊗ (φ⊸ φ)

Another example shows how we can type the term c̄(cx).

Ax
x :φ ⊢ x :φ

Ax
y :ψ ⊢ y :ψ

Merge
x :φ ⊢ x :φ y :ψ ⊢ y :ψ

Sync
x :φ ⊢ cx :ψ y :ψ ⊢ c̄y :φ

Cut
x :φ ⊢ c̄(cx) :φ

2.2.4 Interaction with Contraction and Weakening

The Amida calculus has two strong properties about the missing structural rules:

weakening and contraction. We first state the property about specialized contraction

rules. Informally, if one can duplicate a proof of φ into two, then, one can obtain a

proof of φ from nothing by first borrowing a proof of φ, second duplicating the proof

into two and finally returning one of the two proofs.

Proposition 2.2.2 For any formula φ, if the specialized contraction rule (here, we

omit variables and terms)

O φ,φ,Γ ⊢ ψ
Cφ

O φ,Γ ⊢ ψ
5We have to note however, for Abelian logic, there is an ordinary disjunctive hypersequent system

that enjoys cut-elimination. The conjunctive hypersequents reflect some computational intuition.

28



Ax
x :φ ⊢ x :φ

O O′Merge
O O′

O Γ ⊢ t :φ x :φ,∆ ⊢ u :ψ
Cut

O Γ,∆ ⊢ u[t/x] :ψ

O Γ, x :φ, y :ψ,∆ ⊢ t :θ
IE
O Γ, y :ψ, x :φ,∆ ⊢ t :θ

O Γ ⊢ t :φ ∆ ⊢ u :ψ O′
EE

O ∆ ⊢ u :ψ Γ ⊢ t :φ O′

1R ⊢ ∗ :1
O Γ ⊢ t :φ

1L
O Γ, z :1 ⊢ ign z in t :φ

O Γ ⊢ t :φ ∆ ⊢ u :ψ
⊗R

O Γ,∆ ⊢ t⊗ u :φ⊗ ψ

O Γ ⊢ t :φ ∆ ⊢ u :ψ
Sync

O Γ ⊢ ct :ψ ∆ ⊢ c̄u :φ
(c and c̄ uniquely introduced here)

O Γ, x :φ, y :ψ ⊢ t :θ
⊗L

O Γ, z :φ⊗ ψ ⊢ let z bex⊗ y in t :θ

O Γ, x :φ ⊢ t :ψ
⊸R

O Γ ⊢ λx.t :φ⊸ ψ

O Γ ⊢ t :φ x :ψ,∆ ⊢ u :θ
⊸L

O Γ, f :φ⊸ ψ,∆ ⊢ u[(ft)/x] :θ

Γ ⊢ t :φ Γ ⊢ u :ψ
&R

Γ ⊢ ⟨t, u⟩ :φ& ψ

O Γ, x :φ ⊢ t :θ
&L0

O Γ, z :φ& ψ ⊢ let z be ⟨x, ⟩ in t :θ

O Γ, y :ψ ⊢ t :θ
&L1

O Γ, z :φ& ψ ⊢ let z be ⟨ , y⟩ in t :θ

O Γ ⊢ t :φ
⊕R0

O Γ ⊢ inl(t) :φ⊕ ψ
O Γ ⊢ u :ψ

⊕R1
O Γ ⊢ inr(u) :φ⊕ ψ

Γ, x :φ ⊢ u :θ Γ, y :ψ ⊢ v :θ
⊕L

Γ, z :φ⊕ ψ ⊢ match z of inl(x).u/inr(y).v :θ

Figure 2.1: The typing rules of the Amida calculus. O and O′ stand for hypersequents.

Most rules are straightforward modification of Abramsky’s rules [3]. The Sync rule is

original. Rules &R and ⊕L are only applicable to singleton hypersequents.
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is admissible for any hypersequent O, context Γ and formula ψ, then, φ is inhabited

in the Amida calculus.

Proof By the following derivation.

1R ⊢ ∗ :1 Ax
x :φ ⊢ x :φ

Merge
⊢ ∗ :1 x :φ ⊢ x :φ

Sync
⊢ c∗ :φ x :φ ⊢ c̄x :1 Ax

y :φ ⊢ y :φ
Merge

⊢ c∗ :φ x :φ ⊢ c̄x :1 y :φ ⊢ y :φ
⊗R

⊢ c∗ :φ x :φ, y :φ ⊢ c̄ ∗ ⊗y :1⊗ φ
Cφ

⊢ c∗ :φ x :φ ⊢ c̄x⊗ x :1⊗ φ
Cut ⊢ (c̄(c∗))⊗ (c∗) :1⊗ φ

Ax
z :φ ⊢ z :φ

1L
k :1, z :φ ⊢ ign k in z :φ

⊗L
z :1⊗ φ ⊢ let z be k ⊗ z in ign k in z :φ

Merge
⊢ (c̄(c∗))⊗ (c∗) :1⊗ φ z :1⊗ φ ⊢ let z be k ⊗ z in ign k in z :φ

Cut ⊢ let (c̄(c∗))⊗ (c∗) be k ⊗ z in ign k in z :φ

where Cφ marks the step where the specialized contraction is used. ■

The admissibility of contraction rule Cφ is equivalent to derivability of φ ⊢ φ ⊗ φ,

thanks to ⊗R rule and ⊗L rule.

Remark 2.2.3 (Incompatibility of the bang modality) By this proposition, if we

are to introduce the bang modality [59] of linear logic, then any formula of the form

!φ is a theorem. This is because !φ⊸!φ⊗!φ is a theorem in intuitionistic linear logic.

We state another fact, which is known to Casari [27] who wrote “in the ℓ-logic

there are no ‘additive extrema.’”

Corollary 2.2.4 (Incompatibility of additive disjunctive unit) If there is a for-

mula 0 such that 0 ⊢ φ is derivable for any formula φ, then 0 is provable. As a

consequence, any formula is provable i.e. the resulting logic is inconsistent.

Further, this implies that the Amida calculus is incompatible with the second order

universal quantification. The second order universal quantification adds a form of

type ∀Xφ and two type derivation rules:

O Γ ⊢ t :φ
∀R
O Γ ⊢ t :∀X.φ

(X not free in O or Γ)

O x :ψ[θ/X],Γ ⊢ t :φ
∀L

O x :∀X.ψ,Γ ⊢ t :φ
.

Corollary 2.2.5 (Incompatibility of the second order universal quantification)

If we add the second order universal quantification to the Amida calculus, the resulting

logic is inconsistent.
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Proof Corollary 2.2.4 is applicable because x :∀X.X ⊢ x :φ is derivable for any φ. ■

Next we state the incompatibility of the weakening rule and Abelian logic. After

seeing that the Amida calculus characterizes Abelian logic, the fact is an immediate

consequence of completeness of Abelian logic with respect to Z [104, p. 272], but we

can now give a computational interpretation: of the communicating pair c : φ ⊸ ψ

and c̄ : ψ ⊸ φ, with the help of weakening, we can throw away one primitive c̄ and

still use the other primitive c.

Proposition 2.2.6 (Incompatibility of weakening with Abelian logic) If we add

the weakening rule

H Γ ⊢ ψ
W
H φ,Γ ⊢ ψ

to Abelian logic (where we omit variables and terms), the resulting logic is inconsistent.

Proof Any formula φ is provable by the following derivation tree.

Ax ⊢ ∗ :1
Ax

x :φ ⊢ x :φ
Merge

⊢ ∗ :1 x :φ ⊢ x :φ
Sync

⊢ c∗ :φ x :φ ⊢ c̄x :1
⊸R

⊢ c∗ :φ ⊢ λx.c̄x :φ⊸ 1
W

f :φ⊸ 1 ⊢ c∗ :φ ⊢ λx.c̄x :φ⊸ 1
Cut ⊢ c∗ :φ

where W marks the usage of weakening. The resulting term c∗ sends ∗ somewhere

and waits for a response that is never sent back. ■

To summarize, anything below is inconsistent with the Amida calculus:

• a formula 0 such that ⊢ 0⊸ φ is derivable for all φ,

• the second order universal quantification,

• contraction rule, or

• weakening rule.

Although various extensions to the Amida calculus yield inconsistency, we will see that

the Amida calculus itself is consistent because it characterizes Abelian logic (Theo-

rem 2.5.1, Theorem 2.5.2).
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2.2.5 Evaluation

As a programming language, the Amida calculus is equipped with an operational

semantics that evaluates some closed hyper-terms into a sequence of canonical forms.

The canonical forms are the same as those of Abramsky’s LF [3]:

⟨t, u⟩ ∗ v ⊗ w λx.t inl(v) inr(w)

where v and w are canonical forms and t and u are terms.

An evaluation sequence E is defined by the following grammar:

E ::= ϵ | (t ⇓ v E)

where v is a canonical form.

Now we define evaluation as a set of evaluation sequences (Figure 2.2). Though

most rules are similar to those of Abramsky’s LF [3], we add the semantics for channels.

2.3 Type Safety

When we can evaluate a derivable hypersequent, the result is also derivable. Especially,

this shows that, whenever a communicating term is used, the communicating term

is used according to the types shown in the Sync rule occurrence introducing the

communicating term.

Theorem 2.3.1 (Type Preservation of the Amida calculus) If terms t0, . . . , tn

have a hypersequent ⊢ t0 :φ0 · · · ⊢ tn :φn and an evaluation sequence t0 ⇓
v0 · · · tn ⇓ vn derivable, then

⊢ v0 :φ0 · · · ⊢ vn :φn

is also derivable.

Proof By induction on evaluation using the propositions below. We classify the

situation by the last rule used.

(Merge) By Proposition 2.3.2, we can use the induction hypothesis.

(let t be ⟨x, ⟩ inu) By Proposition 2.3.3, we can use the induction hypothesis.

(Other cases) Similar to above. ■

Two hypersequents O and O′ are channel-disjoint iff it is not the case that O
contains c and O′ contains c̄ for any channel c.
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∗ ⇓ ∗
E t ⇓ ∗ u ⇓ v
E ign t inu ⇓ v

E t ⇓ v u ⇓ w
E t⊗ u ⇓ v ⊗ w

E t ⇓ v ⊗ w u[v/x,w/y] ⇓ v′

E let t bex⊗ y inu ⇓ v′

E E ′Merge
E E ′

(For any channel c, it is not the case that E contains c and E ′ contains c̄.)

λx.t ⇓ λx.t
E t ⇓ λx.t′ u ⇓ v t′[v/x] ⇓ w

E tu ⇓ w

E t ⇓ v u ⇓ w
E ct ⇓ w c̄u ⇓ v

(E , t and u do not contain c or c̄.)

E t ⇓ t′ s ⇓ s′ E ′

E s ⇓ s′ t ⇓ t′ E ′ ⟨t, u⟩ ⇓ ⟨t, u⟩

E t ⇓ ⟨t0, t1⟩ u[t0/x] ⇓ w
E let t be ⟨x, ⟩ inu ⇓ w

E t ⇓ ⟨t0, t1⟩ u[t1/y] ⇓ w
E let t be ⟨ , y⟩ inu ⇓ w

E t ⇓ v
E inl(t) ⇓ inl(v)

E u ⇓ w
E inr(u) ⇓ inr(w)

E t ⇓ inl(v) u[v/x] ⇓ w
E match t of inl(x).u/inr(y).u′ ⇓ w

E t ⇓ inr(v) u′[v/y] ⇓ w
E match t of inl(x).u/inr(y).u′ ⇓ w

Figure 2.2: The definition of evaluation relation of the Amida calculus. E is possibly

the empty evaluation sequence. The whole system is based on Abramsky’s LF. Note

that the results of evaluation are always canonical forms.

Proposition 2.3.2 (Split) If a type derivation leading to O O′ exists for two

channel-disjoint hypersequents, both O and O′ are derivable separately.

Proof By induction on the type derivation. Notice that all typing rules except Sync

touches only one component. Notice also that all typing rules preserve channels from

top-to-bottom, i.e., if a component in the assumption of a rule contains a channel, then

there is a unique corresponding component in the conclusion of the rule containing

the same channel. ■
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Proposition 2.3.3 (Inversion on &L) If O Γ ⊢ let t be ⟨x, ⟩ inu :θ is derivable,

then there is a partition of Γ into Γ0 and Γ1 (up to exchange) such that O Γ0 ⊢
t :φ& ψ Γ1, x :φ ⊢ u :θ is derivable.

Proof By induction on the original derivation. ■

2.3.1 Lack of Convergence

Convergence states that whenever a closed term t is typed ⊢ t :φ, then an evaluation

t ⇓ v is also derivable for some canonical form v. It is a desirable property so that

Abramsky [3] proves it for LF, but there are at least two kinds of counter examples

for convergence of the Amida calculus.

Nested Channel Pairs

Consider a typed term:

Ax
x :1 ⊢ x :1

1R ⊢ ∗ :1⊕R ⊢ inl(∗) :1⊕ 1
Merge

x :1 ⊢ x :1 ⊢ inl(∗) :1⊕ 1
Sync

x :1 ⊢ cx :1⊕ 1 ⊢ c̄(inl(∗)) :1
Cut ⊢ c(c̄(inl(∗))) :1⊕ 1

with no evaluation. When we think about why this process does not have an evaluation,

one explanation is this process is deadlocked. In order to evaluate this closed term,

we can add the following eval-subst rule:

E t ⇓ v u[v/x] ⇓ w
eval-subst

E u[t/x] ⇓ w

so that the following evaluation is possible

∗ ⇓ ∗
∗ ⇓ ∗

inl(∗) ⇓ inl(∗)
∗ ⇓ ∗ inl(∗) ⇓ inl(∗)

c∗ ⇓ inl(∗) c̄(inl(∗)) ⇓ ∗
eval-subst

c(c̄(inl(∗))) ⇓ inl(∗)

.

However, adding the eval-subst rule breaks the current proof of Theorem 2.3.1 (safety),

but with some modifications, the safety property can possibly be proved. Even if we

try that, we must face the real difficulty for finding an operational semantics with

convergence.
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Channels Sending Bound Variables

Consider a typed term:

Ax
x :X ⊢ x :X

1R ⊢ ∗ :1Merge
x :X ⊢ x :X ⊢ ∗ :1

Sync
x :X ⊢ cx :1 ⊢ c̄∗ :X

⊸R
⊢ λx.cx :X ⊸ 1 ⊢ c̄∗ :X

.

If convergence holds, there must be an evaluation

λx.cx ⇓ λx.cx c̄∗ ⇓ v .

When the right component c̄∗ ⇓ v is introduced, the introduction must use an as-

sumption of the form x ⇓ v. However, open terms have no evaluation. Explicit

substitutions [1] might be helpful here. Note that, although the above example poses

a difficulty for convergence, the above example does not witness a deadlock.

Regaining Convergence

Since any thunk6 can be evaluated, we can enclose any typed term t of type φ within

a thunk λx.t of type 1⊸ φ so that λx.t ⇓ λx.t is derivable.

2.3.2 Determinacy

Determinacy states that if t ⇓ v and t ⇓ w hold, then v and w are identical. Since our

evaluation is given to possibly multiple terms at the same time, it is easier to prove a

more general version.

Theorem 2.3.4 (General Determinacy of the Amida calculus) If

t0 ⇓ v0 t1 ⇓ v1 · · · tn ⇓ vn

and

t0 ⇓ w0 t1 ⇓ w1 · · · tn ⇓ wn

hold, then each vi is identical to wi.

Proof By induction on the height of evaluation derivation. Each component in the

conclusion has only one applicable rule. Also, the order of decomposing different

components is irrelevant (the crucial condition is freshness of c and c̄ in Figure 2.2).■

6A thunk is a lambda abstraction λx.t whose type is 1⊸ φ.
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2.4 Session Types and Processes as Abbreviations

In order to see the usefulness of the communication primitives, we try implementing

a process calculus and a session type system using the Amida calculus.

2.4.1 Session Types as Abbreviations

As an abbreviation, we introduce session types. Session types [78, 131] can specify a

communication protocol over a channel. The following definitions and the descriptions

are modification from Wadler’s translations and descriptions of session types [146].

The notation here is different from the original notation by Takeuchi, Honda and

Kubo [131].

!φ ψ ≡ φ⊸ ψ output a value of φ then behave as ψ

?φ ψ ≡ φ⊗ ψ input a value of φ then behave as ψ

⊕{li : φi}i∈I ≡ φ0 & · · ·& φn, I = {0, . . . , n} select from φi with label li

&{li : φi}i∈I ≡ φ0 ⊕ · · · ⊕ φn, I = {0, . . . , n} offer choice of φi with label li

end ≡ 1 terminator

where I is a finite downward-closed set of natural numbers like {0, 1, 2, 3}. As Wadler [146]

notes, the encoding looks opposite of what some would expect, but as Wadler [146]

explains, we are typing channels instead of processes.

The grammar

φ,ψ ::= end | X | !φ ψ | ?φ ψ | ⊕{li : φi}i∈I | &{li : φi}i∈I

covers all types.

A linear type (φ∼ possibly with subscript) is generated by this grammar:

φ∼ ::= end | !ψ φ∼ | ?ψ φ∼ | ⊕{li : φ∼i }i∈I | &{li : φ∼i }i∈I

We define duals of linear types. Again the definition is almost the same as Wadler [146]’s

except that end is self-dual.

!ψ φ∼ = ?ψ φ∼

?ψ φ∼ = !ψ φ∼

⊕{li : φ∼i }i∈I = &{li : φ∼i }i∈I

&{li : φ∼i }i∈I = ⊕{li : φ∼i }i∈I

end = end .
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2.4.2 Processes as Abbreviations

We define the sending and receiving constructs of process calculi as abbreviations:

x⟨u⟩. t ≡ t[(xu)/x] send u through channel x and then use x in t

x(y). t ≡ letx be y ⊗ x in t receive y through channel x and use x and y in t

0 ≡ ∗ do nothing

We have to be careful about substitution combined with process abbreviations. For

example, (x⟨u⟩. t)[s/x] is not s⟨u⟩. t because the latter is not defined. Following the

definition, (x⟨u⟩. t)[s/x] is actually (t[xu/x])[s/x] = t[su/x]. We are going to introduce

the name restriction νx.t after implementing channels.

Below, we are going to justify these abbreviations statically and dynamically. The

static justification comes from typing rules (Figure 2.4.3) and the dynamic justification

comes from evaluation (Figure 2.4.4).

2.4.3 Process Typing Rules as Abbreviations

The session type abbreviation and the processes abbreviation allow us to use the typing

rules in the next proposition.

Theorem 2.4.1 (Process Typing Rules: senders and receivers) These rules are

admissible.

O y :ψ, x :χ ⊢ t :φ
recv

O x : ?ψ χ ⊢ x(y). t :φ

O Γ, x :χ ⊢ t :φ ∆ ⊢ u :ψ
send

O Γ,∆, x : !ψ χ ⊢ x⟨u⟩. t :φ

O Γ ⊢ t :φ
end

O Γ, x :end ⊢ ignx in t :φ
⊢ 0:1

Before presenting the proof, we note that the types of variable x change in the rules.

This reflects the intuition of session types: the session type of a channel changes after

some communication occurs through the channel.

Proof After expanding abbreviations, the first rule is actually one of the original

rules:

O y :ψ, x :χ ⊢ t :φ
⊗L

O x :ψ ⊗ χ ⊢ letx be y ⊗ x in t :φ
.

After expanding abbreviations, the second rule is also one of the original rules:

O Γ, x :χ ⊢ t :φ ∆ ⊢ u :ψ
⊸L

O Γ,∆, x :ψ⊸ χ ⊢ t[(xu)/x] :φ
.
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The third and the fourth rule are more evidently one of the original rules 1L and 1R.■

Example 2.4.2 (Typed communicating terms) Using Theorem 2.4.1, we can type

processes. Figure 2.3 contains one process, which sends a channel y through x and then

waits for input in a channel y′. Here is another process that takes an input w′ from

channel x′, where the input w′ itself is expected to be a channel. After receiving w′,

the process puts inl(∗) in w′.

1R ⊢ ∗ :1
end

w′ : end ⊢ ignw′ in ∗ :1

1R ⊢ ∗ :1⊕R ⊢ inl(∗) :1⊕ 1
send

w′ : !(1⊕ 1) end ⊢ w′⟨inl(∗)⟩. ignw′ in ∗ :1
end

w′ : !(1⊕ 1) end, x′ : end ⊢ ignx′ inw′⟨inl(∗)⟩. ignw′ in ∗ :1
recv

x′ : ?(!(1⊕ 1) end) end ⊢ x′(w′). ignx′ inw′⟨inl(∗)⟩. ignw′ in ∗ :1

We intend these two processes to communicate when we connect the channels x and x′.

For that, we have to implement complicated channels as in the following subsection.

2.4.4 Implementing Channels

We introduced primitives c and c̄ implementing (1 ⊸ φ) ⊗ (φ ⊸ 1). These can be

seen as channels of session types ?φ end and !φ end. Indeed, ?φ end is φ⊗ 1 (which is

inter-derivable with 1⊸ φ) and !φ end is φ⊸ 1. We can generalize this phenomenon

to the more complicated session types7.

Proposition 2.4.3 (Session realizers) For any linear type φ∼, the hypersequent

⊢ t :φ∼ ⊢ u :φ∼

is derivable for some terms t and u.

Proof Induction on φ∼.

(end)
Ax ⊢ ∗ :1

Ax ⊢ ∗ :1Merge
⊢ ∗ :1 ⊢ ∗ :1

is what we seek.

(!ψ φ∼) By the induction hypothesis, ⊢ t′ :φ∼ ⊢ u′ :φ∼ is derivable. Using this,

we can make the following derivation:

Ax
x :ψ ⊢ x :ψ

IH

⊢ t′ :φ∼ ⊢ u′ :φ∼
Merge

x :ψ ⊢ x :ψ ⊢ t′ :φ∼ ⊢ u′ :φ∼
Sync

cx :φ∼ ⊢ x :ψ ⊢ c̄t′ :ψ ⊢ u′ :φ∼
⊗R

x :ψ ⊢ cx :φ∼ ⊢ (c̄t′)⊗ u′ :ψ ⊗ φ∼

⊢ λx.cx :ψ⊸ φ∼ ⊢ (c̄t′)⊗ u′ :ψ ⊗ φ∼

.

7This is impossible using the ordinary linear types.
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(?ψ φ) Symmetric to the above.

(⊕{li : φi}) By the induction hypothesis, for each i ∈ I, we have

⊢ ti :φi ⊢ ui :φi

derived. Hence derivable is

⊢ ti :φi ⊢ i(ui) :⊕j∈Iφj

where i(ui) is an appropriate nesting of inl(·), inr(·) and ui. Combining |I| such

derivations, we can derive

⊢ ⟨ti⟩i∈I :&i∈Iφi ⟨⊢ i(ui) :⊕j∈Iφj⟩i∈I

for a fresh natural number n.

(&{li : φi}) Symmetric to above. ■

We call the above pair t, u in the statement the session realizers of φ∼ and denote

them by ▷(φ∼), ◁(φ∼). Moreover, we use ▷◁(φ∼) to denote the pair ▷(φ∼)⊗◁(φ∼). So

far, a free variable with a linear type represented a channel serving the corresponding

session type. Now, we can substitute the free variables with the session realizers so

that the typed processes can actually communicate. If we have two terms that use free

variables of type φ∼ and φ∼, we can replace those free variables by session realizers.

Corollary 2.4.4 (Binding both ends of a channel) If

O Γ, x :φ∼ ⊢ t :ψ ∆, y :φ∼ ⊢ u :θ

is derivable,

O Γ ⊢ t[▷(φ∼)/x] :ψ ∆ ⊢ u[◁(φ∼)/y] :θ

is also derivable.

Now we can define the name restriction operator as an abbreviation:

νx :φ∼.t ≡ let ▷◁(φ∼) bexL ⊗ xR in t

where we assume injections x 7→ xL and x 7→ xR whose images are disjoint.

Then, in addition to Theorem 2.4.1, more typing rules are available.

Theorem 2.4.5 (Process typing rule: name restriction) The following typing rule

is admissible.
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O Γ, x :φ∼, y :φ∼ ⊢ t :ψ
O Γ ⊢ νx :φ∼.t[xL/x][xR/y] :ψ

Example 2.4.6 (Connecting processes using session realizers) Using the ses-

sion realizers, we can connect the processes typed in Example 2.4.2. Indeed,

⊢ν(x : ?(!(1⊕ 1) end) end).ν(y : !(1⊕ 1) end).

(xR⟨yL⟩. yR(z). ignxR, yR in z)⊗ (xL(w′). ignxL inw′⟨inl(∗)⟩. ignw′ in ∗)

: (1⊕ 1)⊗ 1

is derivable.

Now we have to check the evaluation of the term in this example. For that we prepare

a lemma.

Process Evaluation as Abbreviation

The intention of defining x⟨u⟩. t0 and y(z). t1 is mimicking communication in process

calculi. When we substitute x and y with session type realizers, these terms can

actually communicate.

The next lemma can help us evaluate session realizers.

Lemma 2.4.7 Let t0 be a term containing a free variable x and t1 be a term containing

free variables y and z. The rule

E ▷(φ∼) ⇓ v′ ◁(φ∼) ⇓ w′ t0[v′/x] ⇓ v u ⇓ u′ t1[u′/z][w′/y] ⇓ w
E ▷(!ψ φ∼) ⇓ λx.cx ◁(!ψ φ∼) ⇓ u′ ⊗ w′

(x⟨u⟩. t0)[λx.cx/x] ⇓ v (y(z). t1)[u′ ⊗ w′/y] ⇓ w
is admissible under presence of the eval-subst rule.

Proof By the derivation in Figure 2.4.

Example 2.4.8 (Evaluation of communicating processes) Here is an example

of evaluation using the eval-subst rule.

▷(end) ⇓ ∗ ◁(end) ⇓ ∗

∗ ⇓ ∗
inl(∗) ⇓ inl(∗) ∗ ⇓ ∗
inl(∗) ⇓ inl(∗) ∗ ⇓ ∗

∗ ⇓ ∗
inl(∗) ⇓ inl(∗)

▷(end) ⇓ ∗ ◁(end) ⇓ ∗ inl(∗) ⇓ inl(∗) ∗ ⇓ ∗ inl(∗) ⇓ inl(∗)
♢

▷(!(1⊕ 1) end) ⇓ λx.cx ◁(!(1⊕ 1) end) ⇓ inl(∗)⊗ ∗
(xL⟨inl(∗)⟩. ignxL in ∗)[λx.cx/xL] ⇓ ∗ (xR(z). ignxR in z)[inl(∗)⊗ ∗/xR] ⇓ inl(∗)

▷◁(!(1⊕ 1) end) ⇓ λx.cx⊗ (inl(∗)⊗ ∗)
(xL⟨inl(∗)⟩. ignxL in ∗)[λx.cx/xL]⊗ (xR(z). ignxR in z)[inl(∗)⊗ ∗/xR] ⇓ ∗ ⊗ inl(∗)
ν(x : !(1⊕ 1) end). (xL⟨inl(∗)⟩. ignxL in ∗)⊗ (xR(z). ignxR in z) ⇓ ∗ ⊗ inl(∗)
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The step ♢ uses Lemma 2.4.7.

2.4.5 Copycatting

Proposition 2.4.9 For any linear type φ∼, we can derive x :φ∼, y :φ∼ ⊢ t :1 for some

term t.

Proof By induction on φ∼.

(end) Since end = end, the derivation

⊢ ∗ :1
y :end ⊢ ign y in ∗ :1

x :end, y : end ⊢ ignx, y in ∗ :1

suffices.

(!ψ φ∼) Using the induction hypothesis (IH.), we obtain a derivation:

... (IH.)

x :φ∼, y :φ∼ ⊢ t :1 z :ψ ⊢ z :ψ

x : !ψ φ∼, y :φ∼, z :ψ ⊢ x⟨z⟩. t :1
x : !ψ φ∼, y : ?ψ φ∼ ⊢ y(z). x⟨z⟩. t :1

(?ψ φ∼) Symmetric to above.

(⊕{li : φ∼i }) For brevity, we only consider a binary disjunction of the form ⊕{Left :

φ∼0 ,Right : φ∼1 }. By the induction hypotheses, x0 :φ∼0 , y0 :φ∼0 ⊢ t0 :1 and

x1 :φ∼1 , y1 :φ∼1 ⊢ t1 :1 are derivable. Thus,

x0 :φ∼0 , y :φ∼0 ⊕ φ∼1 ⊢ let y be ⟨y0, ⟩ in t0 :1

and

x1 :φ∼1 , y :φ∼0 ⊕ φ∼1 ⊢ let y be ⟨ , y1⟩ in t1 :1

are derivable. Using these, we can conclude a derivation of

x :φ∼0 ⊕ φ∼1 , y :φ∼0 ⊕ φ∼1 ⊢

matchx of inl(x0).let y be ⟨y0, ⟩ in t0/inr(x1).let y be ⟨ , y1⟩ in t1 :1 .

(&{li : φ∼i }) Symmetric to above. ■
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2.5 Correctness with Respect to Abelian Logic

In this section, we compare the Amida calculus and Abelian logic and discover the

fact that they are identical. This characterization provides a straightforward counter-

example for cut-elimination. First, we show that all Abelian logic theorems are inhab-

ited in the Amida calculus (completeness of the Amida calculus). After that, we show

that all types inhabited in the Amida calculus are theorems of Abelian logic.

2.5.1 Completeness of the Amida Calculus Type System

According to Metcalfe et al. [103], Abelian logic is axiomatized by the following axioms

A1 to A10 and deduction rules mp and &I. An abbreviation φ ˛ ψ is defined to

denote (φ⊸ ψ) & (ψ⊸ φ).

A1 ((φ⊕ ψ)⊸ θ) ˛ ((φ⊸ θ) & (ψ⊸ θ))

A2 ((φ⊗ ψ)⊸ θ) ˛ (φ⊸ (ψ⊸ θ))

A3 (φ⊸ ψ)⊸ ((ψ⊸ θ)⊸ (φ⊸ θ))

A4 ((φ⊸ ψ) & (φ⊸ θ))⊸ (φ⊸ (ψ & θ))

A5 (φ& (ψ ⊕ θ))⊸ ((φ& ψ)⊕ (φ& θ))

A6 φ˛ (1⊸ φ)

A7 (φ& ψ)⊸ φ

A8 (φ& ψ)⊸ ψ

A9 φ⊸ ((φ⊸ ψ)⊸ ψ)

A10 ((φ⊸ ψ)⊸ ψ)⊸ φ

mp if φ⊸ ψ and φ are theorems, ψ is also a theorem

&I if φ and ψ are theorems, φ& ψ is also a theorem.

The most peculiar of these axioms is A10, which is called the relativisation axiom.

Theorem 2.5.1 (Completeness of the Amida Calculus for Abelian Logic) A

theorem of Abelian logic is inhabited in the Amida calculus.

Proof All axioms A1 to A10 are inhabited in the Amida calculus and the Amida

calculus rules satisfy the properties mp and &I. In particular, a term with type A10

can be derived as
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Ax
x :φ ⊢ x :φ

Ax
y :ψ ⊢ y :ψ

Merge
x :φ ⊢ x :φ y :ψ ⊢ y :ψ

Sync
x :φ ⊢ cx :ψ y :ψ ⊢ c̄y :φ

⊸R
⊢ λx.cx :φ⊸ ψ y :ψ ⊢ c̄y :φ

⊸L
z : (φ⊸ ψ)⊸ ψ ⊢ c̄(z(λx.cx)) :φ

⊸R ⊢ λz.c̄(z(λx.cx)) : ((φ⊸ ψ)⊸ ψ)⊸ φ

. ■

2.5.2 Soundness of the Amida Calculus Type System

For soundness, a different axiomatization of Abelian logic in [102] is more useful.

L1 φ⊸ φ

L2 (φ⊸ ψ)⊸ ((ψ⊸ θ)⊸ (φ⊸ θ))

L3 (φ⊸ (ψ⊸ θ))⊸ (ψ⊸ (φ⊸ θ))

L4 ((φ⊗ ψ)⊸ θ) ˛ (φ⊸ (ψ⊸ θ))

L5 (φ& ψ)⊸ φ

L6 (φ& ψ)⊸ ψ

L7 ((φ⊸ ψ) & (φ⊸ θ))⊸ (φ⊸ (ψ & θ))

L8 φ⊸ (φ⊕ ψ)

L9 ψ⊸ (φ⊕ ψ)

L10 ((φ⊸ θ) & (ψ⊸ θ))⊸ ((φ⊕ ψ)⊸ θ)

L11 φ˛ (1⊸ φ)

L12 ((φ⊸ 1)⊸ 1)⊸ φ

C1 1 ˛ (1⊗ 1)

C2 (φ⊸ φ)⊸ 1

mp If φ⊸ ψ and φ are theorems, ψ is also a theorem

&I If φ and ψ are theorems, φ& ψ is also a theorem.

These axioms and rules are enough to prove all inhabited types of the Amida

calculus.
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Theorem 2.5.2 (Soundness of the Amida Calculus for Abelian Logic) An in-

habited type in the Amida calculus is a theorem of Abelian logic.

Proof The IMALL deduction rules are straightforwardly obtained by combining L1–

L12, &I and mp. The Amida axiom (φ ⊸ ψ) ⊗ (ψ ⊸ φ) is a theorem in Abelian

logic by the following argument.

1. By C2, ((φ⊸ 1)⊸ (φ⊸ 1))⊸ 1 is a theorem of Abelian logic.

2. By L4, L5 and mp, (((φ ⊸ 1) ⊗ φ) ⊸ 1) ⊸ ((φ ⊸ 1) ⊸ (φ ⊸ 1)) is a

theorem of Abelian logic.

3. By 1., 2., L2 and mp, (((φ⊸ 1)⊗ φ)⊸ 1)⊸ 1 is a theorem of Abelian logic.

4. By 3., L12 and mp, (φ⊸ 1)⊗ φ is a theorem of Abelian logic.

5. By a symmetric argument, (ψ⊸ 1)⊗ ψ is also a theorem of Abelian logic.

6. By 4., 5., L1, L4 and mp, ((φ ⊸ 1) ⊗ φ) ⊗ ((ψ ⊸ 1) ⊗ ψ) is a theorem of

Abelian logic.

7. Since Abelian logic contains IMALL without additive units, ((φ ⊸ 1) ⊗ ψ) ⊸
(φ⊸ ψ) is a theorem of Abelian logic.

8. By a symmetric argument, ((ψ ⊸ 1) ⊗ φ) ⊸ (ψ ⊸ φ) is also a theorem of

Abelian logic.

9. Combining 6., 7., 8., a theorem (φ⊸ ψ)⊸ (θ⊸ τ)⊸ (φ⊗ θ)⊸ (ψ ⊗ τ) and

mp, we obtain (φ⊸ ψ)⊗ (ψ⊸ φ) as a theorem of Abelian logic. ■

As a corollary of soundness and completeness, some previous literature (Casari [27],

Meyer and Slaney [104]) on Abelian logic provides some facts.

Corollary 2.5.3 (Division by two) If φ⊗ φ is inhabited, so is φ.

Corollary 2.5.4 (Excluded Middle in the Amida calculus) The law of excluded

middle φ⊗ (φ⊸ 1) is inhabited in the Amida calculus.

Corollary 2.5.5 (Prelinearity in the Amida calculus) Prelinearity (φ ⊸ ψ) ⊕
(ψ⊸ φ) is inhabited in the Amida calculus.
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2.6 Proof Nets

Toward better understanding the Amida calculus, a technique called proof nets seems

promising. Generally, proof nets are straightforward for the multiplicative fragments

but complicated when additive and exponential connectives are involved. Since the

Amida axiom (φ⊸ ψ) ⊗ (ψ ⊸ φ) does not contain additives (&,⊕) or exponentials

(!, ?), we can focus on the multiplicative connectives (⊸ and ⊗). The fragment is called

IMLL (intuitionistic multiplicative fragment of linear logic). We also use the unit 1 for

technical reasons. We first describe the IMLL proof nets and their properties. Then

we add a new kind of edges called the Amida edges and see it characterizes Abelian

logic.

The Amida links are named after the Amida lottery (see Subsection 1.3.9).

2.6.1 IMLL Essential Nets

Proof nets for intuitionistic linear logics are called essential nets. This subsection re-

views some known results about the essential nets for intuitionistic multiplicative linear

logic (IMLL). The exposition here is strongly influenced by Murawski and Ong [111].

We can translate a polarity p ∈ {+,−} and an IMLL formula φ into a polarized

MLL formula _φ^
p following Lamarche [92] and Murawski and Ong [111]. We omit the

definition of polarized MLL formulae because the whole grammar is exposed in the

translation below:

_1^
+ = 1+ _1^

− = ⊥−

_X^
+ = X+ _X^

− = X−

_φ⊸ ψ^
+ = _φ^

− `+ _ψ^
+

_φ⊸ ψ^
− = _φ^

+ ⊗− _ψ^
−

_φ⊗ ψ^
+ = _φ^

+ ⊗+ _ψ^
+

_φ⊗ ψ^
− = _φ^

− `− _ψ^
− .

For example, the Amida axiom can be translated into a polarized MLL formula

_(X ⊸ Y )⊗ (Y ⊸ X)^
+

= _X ⊸ Y ^
+ ⊗+ _Y ⊸ X^

+

=
(
_X^
− `+ _Y ^

+
)
⊗+

(
_Y ^
− `+ _X^

+
)

=
(
X− `+ Y +

)
⊗+

(
Y − `+ X+

)
.

The symbol ` is pronounced “parr.”

Any polarized MLL formula can be translated further into a finite rooted tree

containing these branches and polarized atomic formulae (X−, X+,1+,⊥−) at the
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leaves.

ϕ−

`
+ ψ+ ϕ−

`
− ψ− ϕ+

⊗
+ ψ+ ϕ+

⊗
− ψ−

ψ+ϕ− ψ+
ϕ− ψ− ψ−ϕ+ ϕ+

For brevity, we sometimes write only the top connectives of labeling formulae. In that

case, these branching nodes above are denoted like this.

`
+

`
−

⊗
+

⊗
−

+− + +− − + −

We call arrows with upward (resp. downward) signs up-edges (resp. down-edges). The

dashed child of a `+ node p is the node which the dashed line from p reaches. The

branching nodes labeled by `+,`−,⊗+ and ⊗− are called operator nodes.

When we add axiom edges and ⊥-branches (shown below) to the other operator

nodes (shown above) we obtain an essential net of φ. Due to the arbitrariness of

choosing axiom edges and ⊥-branches, there are possibly multiple essential nets for a

formula8.

X
+

X
−

axiom edge
⊥-branch

⊥
−

Example 2.6.1 (An essential net of the Amida axiom) Here is one of the es-

sential nets of the Amida axiom (X− `+ Y +)⊗+ (Y − `+ X+).

⊗
+

`
+

X
−

X
+Y

+
Y

−

`
+

8Murawski and Ong [111] restricts the class of formulae to linearly balanced formulae so that the

essential net is uniquely determined.
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However, the essential net in Example 2.6.1 is rejected by the following correctness

criterion.

Definition 2.6.2 (Correct essential nets) A correct essential net is an essential

net satisfying all these conditions:

1. Any node labeled with X+ (resp. Y −) is connected to a unique node labeled with

X− (resp. Y +). Any leaf labeled with ⊥− is connected to a ⊥-branch. 1+ is not

connected to anything above itself;

2. the directed graph formed by up-edge, down-edge, axiom edges and ⊥-branches is
acyclic;

3. for every `+-node p, every path9 from the root that reaches p’s dashed child also

passes through p.

The essential net in Example 2.6.1 is not correct for condition 3. Actually, the Amida

axiom does not have any correct essential net. IMLL sequent calculus has the sub-

formula property so that we can confirm that the Amida axiom is not provable in

IMLL.

Theorem 2.6.3 (Essential nets by Lamarche [92], Murawski and Ong [111])

An IMLL formula φ is provable in IMLL iff there exists a correct essential net of φ.

Proof The left to right is relatively easy. For the other way around, Lamarche [92]

uses a common technique of decomposing an essential net from the bottom. Murawski

and Ong [111] chose to reduce the problem to sequents of special forms called regular.■

Actually, Lamarche [92] also considers the cut rule10 in essential nets, thus we can

include the following general axioms (as macros) and cuts (as primitives) and still use

Theorem 2.6.3:

ϕ
+

ϕ
−

general axiom cut

ϕ
+

ϕ
−

.

9A path must follow solid edges according to the direction. Dashed edges are not directed and

they are not contained in paths.
10As well as additive operators and exponentials.
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2.6.2 The Amida Nets

Definition 2.6.4 (The Amida nets) For a hypersequent H, Amida nets of H are

inductively defined by the following three clauses:

• an essential net of H is an Amida net of H;

• for an Amida net of H with two different11 up-edges,

e0 e1

replacing these with

e0d e1d

e0u e1u

ea

yields an Amida net of H, where the above component has two paths e0deae1u

and e1deae0u;

• for an Amida net of H with an up-edge,

e

replacing this with

11The two edges can be connected by a new edge as long as they are different; their relative positions

do not matter.
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eu

em

ed

ea

yields an Amida net of H, where the above component has one finite path edeaeu

and one infinite path · · · emeaemea · · · .

In these clauses, we call the edges labeled ea the Amida edges.

Definition 2.6.5 (Correct Amida nets) A correct Amida net is an Amida net sat-

isfying the three conditions in Definition 2.6.4.

The Amida edge is not merely a crossing of up-edges. See the difference between

ϕ
+ ψ+

ϕ
+

ψ+

and

ϕ
+ ψ+

ϕ
+ψ+

.

The difference is the labels at the bottom. Although Amida edges cross the paths,

they do not transfer labels. This difference of labels makes Amida nets validate the

Amida axiom.

Example 2.6.6 (A correct Amida net for the Amida axiom) Here is a correct

Amida net for the Amida axiom (X ⊸ Y )⊗ (Y ⊸ X).
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⊗
+

`
+

X
−

X
+Y

+
Y

−

`
+

In terms of the set of paths, the above Amida net is equivalent to the following correct

essential net for (X ⊸ X)⊗ (Y ⊸ Y ).

⊗
+

`
+

X
−

X
+Y

+
Y

−

`
+

2.6.3 Soundness and Completeness of Amida nets

Theorem 2.6.7 (Completeness of Amida nets) If a hypersequent H is derivable,

there is a correct Amida net for H.

Proof Inductively on hypersequent derivations. The Sync rule is translated into a

crossing with an Amida edge:

Γ ⊢ φ ∆ ⊢ ψ
Γ ⊢ ψ ∆ ⊢ φ

7→

ϕ ψ

ϕψ

where the crossing exchanges the formulae and the Amida edge keeps the path con-

nections vertically straight. ■
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Theorem 2.6.8 (Soundness of Amida nets) If there is a correct Amida net for a

hypersequent H, then H is derivable.

Proof From a correct Amida net, first we move the Amida edges upwards until they

are just below axiom edges12. The moves are as follows.

⊗
+

⊗
+

ϕ ϕψ χ
ψ χ

ψ ⊗ χ ϕ⊗ 1 ψ ⊗ χϕ

⊗
+

1
+

`
+

ϕ
+ χ

+

ϕ
+

ψ−

`
+ χ+

`
+

`
+

ψ−

ψ−

`
+ χ+

⊥
−

⊥
−

`
+ (ϕ+

⊗
+
1
+)

ϕ
+

χ
+

⊗
+

⊗
+

ψ−

1
+

ψ−

`
−

⊥
−

1
+

These translations have two properties.

12The idea is similar to the most popular syntactic cut-elimination proofs.
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1. When the original (contained in a larger picture) is a correct Amida net, the

translation (contained in the same larger picture) is also a correct Amida net.

2. The end nodes of the translation correspond to the end nodes of the original,

and the corresponding end nodes have the same label (up to logical equivalence

in IMLL). In case of ⊗ translation, φ and φ⊗ 1 are logically equivalent because

1 is the unit of ⊗. In case of ` translation, φ and ⊥`φ are logically equivalent

because ⊥ is the unit of `.

For checking the first condition, it is enough to follow the paths (crossing all Amida

edges). For the second condition, it is enough to follow the vertical edges ignoring the

Amida edges and ⊥-branches.

The ⊗ move introduces Amida edges only above the branching rules. Although

the ` move introduces an Amida edge below a branching rule, that branching rule is

of ⊗ nature. Also, the ` move introduces an Amida edge below ψ-axiom link, which

is actually a macro. So we have to continue applying the translation moves in the

macro. However, since ψ is a strictly smaller subformula of ψ`χ, this does not cause

infinite recursion.

Then, by these translation moves, the whole Amida net is decomposed vertically

into three layers. At the top, there is a layer with only axiom edges. In the middle,

there is a layer with only vertical edges and Amida edges. At the bottom, there is a

layer that contains only ordinary essential net nodes.

Since the middle layer is an Amida lottery, it defines a permutation. That per-

mutation can be expressed as a product of transpositions, so that the original Amida

lottery is equivalent to an encoding of a hypersequent derivation that consists of only

Sync rules.

After we encode the top and the middle layer into a hypersequent derivation,

encoding the bottom layer can be done in the same way as Lamarche’s approach [92].■

We wonder whether it is possible to add Amida edges to the IMALL− essential

nets following Lamarche [92]. The additives are notoriously difficult for proof nets and

we do not expect the combination of additive connectives and Amida edges can be

treated in a straightforward way.

2.7 Related Work

2.7.1 Analytic Calculus for Abelian Logic

Metcalfe et al. [103] gave a labeled sequent calculus for Abelian logic. Some years
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later, Metcalfe [102] gave a hypersequent calculus for Abelian logic and proved cut-

elimination theorem for the hypersequent calculus. His formulation is different from

ours because Metcalfe’s system does not use conjunctive hypersequents. He sticks to

the traditional hypersequent formulation where components are interpreted disjunc-

tively. The paper [102] is informative about some logics weaker than Abelian logic so

that there might be a hint of getting a hyper-lambda calculi for these weaker logics.

Before Metcalfe et al. [103], Shirahata [128] studied the multiplicative fragment of

Abelian logic, which he called CMLL (compact multiplicative linear logic). He gave a

categorical semantics for the proofs of a sequent calculus presentation of CMLL and

then proved that the cut-elimination procedure of the sequent calculus preserves the

semantics. Since our Amida net presentation also gives a non-degenerate semantics

for the same logic, we speculate that Amida nets provide a suitable presentation for

morphisms of compact closed categories. Remarkably, Shirahata [128] also noted that

addition of infinite additives yields inconsistency although he did not notice his CMLL

is identical to the multiplicative fragment of Abelian logic13. He also noted that

addition of finite additives yields a counter-example of cut-elimination, which we will

note in Subsection 2.8.2.

2.7.2 Linear Logic and Session Types

Session types [78, 131] appeared in this chapter. Session types aim at typing channels

and processes in π-calculus so that the process execution is deterministic and not

ending in deadlock. In general, session type systems are not based on a well-known

logic. However, there are recent developments on encoding session types into linear

type systems.

Kobayashi-Pierce-Turner’s Type System

Kobayashi et al. [90] developed a type system for the π-calculus processes. Similarly to

the type system presented here, their type system can specify types of communication

contents through a name and how many times a name can be used. In some sense,

that type system is more flexible than the one shown in this chapter. First, their type

system allows a liberal typing on a channel so that the channel can be used for any

number of times. Second, their type system can type replicated processes. Third, their

type system allows weakening [90, Lemma 3.2]. In other respects, the type system in

13Ciabattoni et al. [31] already pointed out the fact that Shirahata [128] and Metcalfe et al. [103]

studied the same logic.
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[90] is less expressible. That type system does not have lambda abstractions. Also,

in contrast to our type system, it is impossible to substitute a free variable with a

process in that type system. This is related to the fact that in their type system, a

sequent contains types on the left side but not on the right side. Since there are no

types on the right side, their sequent is hard to interpret logically.

Caires and Pfenning’s Typing System

Caires and Pfenning [26] provide a type system for a fragment of π-calculus. Their

type system imposes a discipline stronger than necessary to provide deadlock freedom.

For example, this escrowing process P below is not typable in their type system:

P = x⟨y⟩. x(a). y(b). x⟨b⟩. y⟨a⟩. 0 .

The process first emits a channel y through channel x and then takes inputs from x

and y and outputs them respectively to y and x. Following the informal description

of types by Caires and Pfenning [26], the process P should be typable as

⊢ P :: x : (A⊸ B)⊗ (B⊸ A) .

However, such typing is not possible because (A ⊸ B) ⊗ (B ⊸ A) is not a theorem

of dual intuitionistic linear logic (DILL), which their type system is based on. In our

type system, the following sequent is derivable

x : !(!B ?A end) ?B !A end ⊢

ν(y : !B ?A end).x⟨yL⟩. x(a). yR(b). x⟨b⟩. yR⟨a⟩. ignx, y in 0:1

The resulting sequent indicates that the process is typable with one open channel x

that first emits a channel that one can send B to and receive A from, second receives

a value of B and finally sends a value of A. This example shows that our type system

can type some terms that the type system in Caires and Pfenning [26] cannot.

The most complicated example in Caires and Pfenning [26] involves a drink server.

Example 2.7.1 (Drink server from Caires and Pfenning [26] in the Amida cal.)

ServerProto = (N ⊸ I ⊸ (N ⊗ 1)) & (N ⊸ (I ⊗ 1))

= (!N !I ?N end) & (!N ?I 1)

N stands for the type of strings and I stands for the type of integers, but following

Caires and Pfenning [26], we identify both N and I with 1. Below, SP abbreviates
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ServerProto. Here is the process of the server, which serves one client and terminates.

Serv = ⟨s(pn). s(cn). s⟨rc⟩. ign pn, cn, s in 0, s(pn). s⟨pr⟩. ign s, pn in 0⟩

We can derive a sequent s :SP ⊢ Serv :1.

Here is one client:

⊢ 0:1
s : end ⊢ ign s in 0:1

s :end, pr : I ⊢ ign pr, s in 0:1

s : ?I end ⊢ s(pr). ign pr, s in 0:1 ⊢ tea :N

s : !N ?I end ⊢ s⟨tea⟩. s(pr). ign pr, s in 0:1

s :ServerProto ⊢ let s be ⟨ , s⟩ in s⟨tea⟩. s(pr). ign pr, s in 0:1

In words, the client first chooses the server’s second protocol, which is price quoting,

and asks the price of the tea, receives the price and terminates.

We can combine the server with this client. However, since the Amida calculus lacks

the exponential modality, Amida calculus cannot type any term with !ServerProto,

which the type system of Caires and Pfenning can [26]. In order to do that, we might

want to tolerate inconsistency and add µ and ν operators from the modal µ-calculus,

like Baelde [14] did, and express !ServerProto as νX.(SeverProto⊗X).

Wadler’s Encoding

Wadler [146] gave a type system for a process calculus based on classical linear logic.

Although the setting is classical, the idea is more or less the same as Caires and

Pfenning [26]. Wadler’s type system cannot type the escrowing process above. Worse,

the definition of processes by Wadler [146] does not recognize the escrowing process

x⟨y⟩. x(a). y(b). x⟨b⟩. y⟨a⟩. 0

as a process at all. His grammar requires the output construction to be used in the

form

x⟨y⟩. (P | Q)

where x is bound in Q but not in P and y is bound in P but not in Q. Of course,

there is a way to escape the above restriction by making P and Q communicate, but

that option is prohibited by the typing rules.

Wadler [146] uses classical linear logic rather than intuitionistic linear logic. He

justifies the choice for “greater simplicity and symmetry.” In terms of provability, the

shift from intuitionistic to classical linear logic will not make any difference. However,
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in terms of proof nets, one difficulty looms. In classical multiplicative linear logic,

adding the Amida edges to proof nets seems harder than the intuitionistic case because

classical MLL proof nets have no direction on edges. After a path crosses an Amida

edge, the author has no idea which direction the path should continue; one plausible

solution is allowing multiple processes to track the paths in parallel and making these

processes synchronize on Amida edges.

That said, Wadler’s type system is similar to ours; our abbreviations are largely

taken from Wadler’s translations.

Giunti and Vasconcelos’s Type System

Giunti and Vasconcelos [62] give a type system for the pi calculus with the type

preservation theorem. Their type system is extremely similar to our type system.

They say “the goal of this work is to equip types with a constructor able to denote

the two ends of a same channel” [62, Introduction]. One of their typing rules

Γ, x : (S, S) ⊢ P
Γ ⊢ (νx)P

is similar to a rule in Theorem 2.4.5

O Γ, x :φ∼, y :φ∼ ⊢ t :ψ
O Γ ⊢ νx :φ∼.t[xL/x][xR/y] :ψ

.

In many cases, the Curry-Howard correspondence is followed from the logical world

to the programming world: for already known logics, new lambda calculi are invented

(e.g. [2, 117, 142]). However, in our case, it seems that we have just found a connection

between an already known logic called Abelian logic and an already known typing

discipline invented by Giunti and Vasconcelos [62]. It will be worthwhile to compare

their system with our type system closely.

2.7.3 Join Calculus

The join calculus [51] is a process calculus, which is used as a basis for a language

JoCaml [53]. An implicit typing system [52] allowed the join calculus to be successfully

merged with an ML family language OCaml, but the type system does not guarantee

determinacy or ensure that all messages are consumed.

2.7.4 Continuations

The eval-subst rule enables an evaluation c̄[C[cv]] ⇓ v, which reminds us of the call-

with-current-continuation primitive [122] and shift/reset primitives [6, 40]. The ap-

pearance of these classical type system primitives is not surprising because Abelian
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logic validates ((p ⊸ q) ⊸ q) ⊸ p, which is a stronger form of the double negation

elimination. Possibly we could use the technique of Asai and Kameyama [6] to analyze

the Amida calculus with eval-subst rule.

2.7.5 Logic Programming

There are at least two ways to interpret logics computationally. One is proof reduction,

which is represented by λ-calculi. The other is proof searching. We have investigated

the Amida calculus, which embodies the proof reduction approach to the Amida axiom.

Then what implication does The Amida axiom have in the proof searching approach?

Let us cite an example from Kobayashi and Yonezawa [89, A.2]:

Consumption of a message m by a process m ⊸ B is represented by the

following deduction:

(m⊗ (m⊸ B)⊗ C)⊸ (B ⊗ C)

where C can be considered as other processes and messages, or an envi-

ronment.

Using the Amida axiom, the inverse

(B ⊗ C)⊸ (m⊗ (m⊸ B))⊗ C

is derivable. This suggests that the Amida axiom states that some computation is

reversible in the context of proof searching. We suspect that this can be useful within

the realm of reversible computation [134].

2.8 Discussion

2.8.1 Adding Agents, Recursions, . . .

Our type system has a drawback of having only finitely many processes. We expect it

straightforward to overcome this weak point by adding recursions in our type system.

As a guidance we can take µMALL of Baelde [14].

It is tempting to add modalities representing agents and then study the relationship

with the multiparty session types [17, 81]. For that, intuitionistic epistemic logic

by Hirai [75, 76] will be useful.

In order to implement this lambda calculus as a programming language, we need

linear types. If we seek a quick way of implementing our hyper-lambda calculus on
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top of an existing ML family programming language, we have to choose the existing

language carefully. For example, OCaml and Haskell uses intuitionistic type system so

if we use these languages naively, the Amida axiom makes the type system inconsistent

and some communication primitives can be thrown away, leaving the peer deadlocked.

The uniqueness type of the programming language Clean [113] does not allow con-

traction, but the uniqueness type is still not special enough because their type system

allows weakening.

2.8.2 Cut-Elimination

In the Amida calculus, there is a hypersequent that can be derived with the cut rule

but not without cut rules. For example, X,Y ⊢ X ⊢ Y can be derived with a cut

rule application:

Ax
Y ⊢ Y

Ax
X ⊢ X⊸R ⊢ X ⊸ XMerge

Y ⊢ Y ⊢ X ⊸ X
Sync

Y ⊢ X ⊸ X ⊢ Y

Ax
X ⊢ X Ax

X ⊢ XMerge
X ⊢ X X ⊢ X

⊸L
X ⊸ X,X ⊢ X

Cut
X,Y ⊢ X ⊢ Y

However, the conclusion is not derivable without the cut rule (as confirmed by a simple

proof searching).

Worse, it is easy to see that the prelinearity (φ ⊸ ψ) ⊕ (ψ ⊸ φ) does not have

a cut-free proof. However, since there is a cut-free deduction system for Abelian

logic [102], we consider it natural to expect the same property for a suitable extension

of the Amida calculus, which would contain terms and reductions corresponding to

proof rules and proof reductions in the system of Metcalfe [102].

2.8.3 The Problem with Excluded Middle

Since the Amida calculus characterizes Abelian logic, there is a closed term t with

the sequent ⊢ t : (X ⊸ 1)⊕X derivable. We tried looking at one such term t, but it

involved channels contained in lambda abstraction bodies and additive pairs. Unfor-

tunately, the closed lambda term does not choose left or right so that it does not give a

constructive justification to the excluded middle. Since the closed term t uses additive

constructs, we expect the multiplicative fragment to be much more explainable.

2.8.4 Non-Commutative Version of the Amida Axiom

Including the the non-commutative version of the Amida axiom (φ/ψ)⊗ (ψ/φ) to the

full Lambek calculus turns out to be equivalent to adding (ψ\φ)⊗(φ\ψ). Algebraically
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speaking, the set of equations of the form (x/y)·(y/x) = 1 forms an equational basis for

LG, the variety of lattice-ordered groups. In a lattice-ordered group, (x/y) · (y/x) =

(x · y−1) · (y · x−1) = 1. On the other hand, assuming (x/y) · (y/x) = 1, when we

substitute 1 for x, we obtain (1/y) · (y/1) = 1. By the definition of residuation and

the unit 1 of ·, we have (1/y) · y = 1, which forms an equational basis for the variety

of lattice-ordered groups [57, Lemma 3.25].

2.8.5 Program Specification and Verification

Since the typing derivations of the Amida calculus can be interpreted as proofs of

Abelian logic, there is a possibility of specifying properties of processes using (first-

order) Abelian logic formulae and then proving those properties using conjunctive

hypersequents14. If that succeeds, the technique would be the first application of

Abelian logic in program verification.

2.9 Conclusions

We found a new axiomatization of Abelian logic: the Amida axiom (φ⊸ ψ)⊗(ψ⊸ φ)

on top of IMALL−. The axiomatization has an application for encoding process calculi

and session type systems. As a technique, we used conjunctive hypersequents for the

first time, where components in a hypersequent are interpreted conjunctively rather

than disjunctively. The resulting hyper-lambda calculus is somewhat hard to treat

theoretically. If we need convergence or deadlock-freedom, we need the eval-subst rule

in the evaluation rule (Subsection 2.3.1), which poses a threat to type safety. Moreover,

there are some inhabited types like φ ⊕ (φ ⊸ 1) and (φ ⊸ ψ) ⊕ (ψ ⊸ φ), whose

constructive justification is hard to see. Plausibly, the situation can be remedied by

extending the Amida net approach treated in Section 2.6.

14When the author applied for Grant-in-Aid for JSPS Fellows 23-6978, the proposal included such

a plan. According to the proposal, this research would proceed from finding a typed lambda calculus

then to developing a logic for proving properties of the obtained programming language.
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Chapter 3

An Asynchronous Hyper-Lambda Calculus

3.1 Summary

We define a typed lambda calculus based on Avron’s hypersequent calculus [8] for

Gödel-Dummett logic. We show that this calculus models waitfree computation [70,

125]. Besides strong normalization and non-abortfullness, we give soundness and com-

pleteness of the calculus against the typed version of waitfree protocols. The calculus

is not only proof-theoretically interesting, but also valuable as a basis for distributed

programming languages. In other words, we extend Curry-Howard isomorphism [130]

to Gödel-Dummett logic and waitfreedom. The content of this chapter appeared in

a conference paper by Hirai [77] although substantial modification has been applied

since.

On one hand, Gödel-Dummett logic [43] is one of the intermediate logics between

classical and intuitionistic logics. On the other hand, waitfreedom [70, 125] is a class

of distributed computation without synchronization among processes.

We connect Gödel-Dummett logic and waitfreedom using Avron’s hypersequent

calculus [8]. In doing that, we respond to his suggestion:

it seems to us extremely important to determine the exact computational

content of them [intermediate logics]—and to develop corresponding ‘λ-

calculi’ —Avron [8].

Differently from intuitionistic logic, Gödel-Dummett logic validates all formulae of the

form (φ ⊃ ψ) ∨ (ψ ⊃ φ). We aim at building a typed lambda calculus with some

terms witnessing those formulae. Such a term M : (φ ⊃ ψ) ∨ (ψ ⊃ φ) must choose

M ⇝∗ inl (· · ·) or M ⇝∗ inr (· · ·). We devise a nondeterministic lambda calculus in

Section 3.2. In this lambda calculus, terms can contain operators that read from
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and write to the store, or memory. In essence, the nondeterminism arises from the

scheduling of concurrent processes: which process writes to the store before which

process reads from the store.

Waitfreedom is a class of distributed computation where processes cannot wait for

other processes. When two processes try to exchange information, the faster process

can pass information to the slower one, but not always vice versa because the slower

process might start after the faster one finishes. In this situation, computation is

nondeterministic in general.

The contribution of this chapter lies in capturing the nondeterminism of waitfree-

dom using the nondeterministic λ-calculus for Gödel-Dummett logic. In Section 3.2,

we define a lambda calculus and prove some of its properties. In Section 3.3, we define

typed waitfreedom. Finally in Section 3.4, we prove that the lambda calculus charac-

terizes typed waitfreedom. In other words, we show that the λ-terms in the lambda

calculus can solve a typed input-output problem if and only if it is waitfreely solvable.

3.2 λ-GD

In this section, we define a typed lambda calculus λ-GD based on hypersequents. This

constitutes the second contribution of this thesis. Moreover, the lambda calculus is

one side of the Curry-Howard isomorphism that will be matched against the waitfree

computation.

We first present a proof system for Gödel-Dummett logic. Then we turn the proof

system into typing rules for λ-terms of λ-GD, give a set of reductions and prove strong-

normalization and non-abortfullness. We show that the proof system using the hyper-

sequent style [8]. In the usual sequent calculi, each reasoning step concludes a sequent

Γ ⊢ φ where Γ is a possibly empty sequence of formulae. By contrast, in the hyper-

sequent calculi, each reasoning step concludes a hypersequent, which is a finite, non-

empty sequence of sequents. Of the hypersequent Γ0 ⊢ φ0 Γ1 ⊢ φ1 · · · Γn ⊢ φn,

each sequent Γi ⊢ φi is called a component . Each component Γi ⊢ φi is interpreted

as an implication: the conjunction of Γi implies φi. The whole hypersequent is in-

terpreted as disjunction of implications: ⊢ is interpreted as implication and as

disjunction. In other words, Γi implies φi for at least one i ∈ {0, 1, . . . , n}. When we

give computational interpretation to proofs, we still interpret the components disjunc-

tively: namely, a derivation tree concluding a hypersequent represents a sequence of

concurrent processes at least one of which is guaranteed to succeed.
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3.2.1 Logic

Let us assume a countably infinite set PVar of propositional variables. We define local

formulae φ,ψ (also called local types) by the following BNF, where I is a propositional

variable1:

φ,ψ ::= ⊥ | I | (φ ⊃ ψ) | (φ ∧ ψ) | (φ ∨ ψ) .

We omit parentheses when no ambiguity occurs. We assume a countably infinite

number of processes. A global formula (also called a global type) is a non-empty partial

map from processes to local formulae. We use φ+ and ψ+ for global formulae. For a

process i, as a notation, [i]φ is a global formula that maps i to φ but does not map

any other processes to local formulae. We name such global formulae that map only

one process as singleton global formulae. The unary operators [0], [1], . . . are called

modalities. Informally, the local formulae describe datatypes used by each process.

The global formulae describe inputs or outputs of possibly multiple processes.

A context (denoted by Γ and ∆ possibly subscripted) is a potentially empty finite

sequence of singleton global formulae. A sequent Γ ⊢ φ+ is a pair of a context and a

global formula. A hypersequent is a finite sequence of sequents.

The underlying logic has the derivation rules in Figure 3.2. If we omit all the

modalities, these rules characterize Gödel-Dummett logic.

Theorem 3.2.1 (Characterization of Gödel-Dummett logic) For any local for-

mula φ, φ is a theorem in Gödel-Dummett logic iff [0]φ is provable.

Proof We consider a translation of a global formula φ+ to a local formula. Let I

be the domain of φ+. The translation is
∧∧

i∈I φ
+(i). After translating all rules in

Figure 3.2, both directions of the statement can be shown by induction on derivations.■

Indeed, [0]((φ ⊃ ψ) ∨ (ψ ⊃ φ)) is provable (Figure 3.1).

3.2.2 Term Assignment

We assume distinct, countably infinite sets of variables and locations. Locations are

denoted by c, d, . . .; process i, j, . . . and variables x, y, . . .. Later, locations will be used

to specify a location in a store. A location in a store can hold a term or be empty. Like

in the λ-calculus, some terms reduce to other terms, but in this calculus, terms may

interact with stores (like a program written in Haskell or OCaml does with i-vars).

This behavior will be shown later in the definition of reductions.
1We include ⊥ in the definition of local formulae because Gödel-Dummett logic has ⊥ although ⊥

is not necessary to encode waitfree computation.
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[0]Ax
[0]P ⊢ [0]P

[0]Ax
[0]Q ⊢ [0]Q

00-com
[0]P ⊢ [0]Q [0]Q ⊢ [0]P

[0] ⊃ I
⊢ [0](P ⊃ Q) [0]Q ⊢ [0]P

[0] ⊃ I
⊢ [0](P ⊃ Q) ⊢ [0](Q ⊃ P )

[0] ∨ I
⊢ [0]((P ⊃ Q) ∨ (Q ⊃ P )) ⊢ [0](Q ⊃ P )

[0] ∨ I
⊢ [0]((P ⊃ Q) ∨ (Q ⊃ P )) ⊢ [0](P ⊃ Q) ∨ (Q ⊃ P )

EC
⊢ [0]((P ⊃ Q) ∨ (Q ⊃ P ))

Figure 3.1: A derivation of Dummett’s axiom under modality [0] in λ-GD.

We define local terms M by BNF:

M ::=x | (∗→c
←c)M | ∗←c | [M,M ] | abort | πl (M) | πr (M) | ⟨M,M⟩ |

inl (M) | inr (M) || matchM of inl(x).M/inr(y).Mλx.M | (MM)

where x is a variable and c is a location. All variable occurrences except the first clause

are binding. The set of free variables of a local term FV(M) is defined inductively on

M :

FV(x) = {x}

FV(∗→c
←c)M = FV(M)

FV(∗←c) = ∅

FV([M,N ]) = FV(M) ∪ FV(N)

FV(abort ) = ∅

FV(πl (M)) = FV(M)

FV(πr (N)) = FV(N)

FV(⟨M,N⟩) = FV(M) ∪ FV(N)

FV(inl(M)) = FV(M)

FV(inr(M)) = FV(M)

FV(λx.M) = FV(M) \ {x}

FV((MN)) = FV(M) ∪ FV(N)

FV(matchM of inl(x).N/inr(y).O) = FV(M) ∪ (FV(N) \ {x}) ∪ (FV(O) \ {y}) .

A closed local term is a local term that has no free variables.

A global term is a partial map from processes to local terms. For example, a global

term {0 7→ λx.x, 1 7→ y} maps process 0 to local term λx.x and process 1 to local term

y. We can substitute a local term for a variable in a global term. The substitution is
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External Rules

H0 Γ ⊢ [i]φ H1 ∆ ⊢ [j]ψ
ij-com

H0 H1 Γ ⊢ [i]ψ ∆ ⊢ [j]φ

H+

EW
H+ Γ ⊢ φ+

H Γ ⊢ φ+ Γ ⊢ φ+

EC
H Γ ⊢ φ+

H Γ ⊢ φ+ ∆ ⊢ ψ+ H′
EE

H ∆ ⊢ ψ+ Γ ⊢ φ+ H′

Inner Global Rules

H Γ, [i]φ, [j]ψ,∆ ⊢ θ+
IE

H Γ, [j]ψ, [i]φ,∆ ⊢ θ+
H Γ ⊢ φ+

IW
H [i]ψ,Γ ⊢ φ+

H [i]ψ, [i]ψ,Γ ⊢ φ+

IC
H [i]ψ,Γ ⊢ φ+

H0 Γ,∆0 ⊢ (φi)i∈I H1 Γ,∆1 ⊢ (ψj)j∈J
∧I

H0 H1 Γ,∆0,∆1 ⊢ (φk ∧ ψk)k∈I∩J ⊔ (φi)i∈I\J ⊔ (ψj)j∈J\I

H Γ ⊢ (φi)i∈I
∧E

H Γ ⊢ (φi)i∈J
where J is a subset of I.

Inner Local Rules

[i]Ax
[i]φ,Γ ⊢ [i]φ

H Γ ⊢ [i]⊥
[i]⊥E

H Γ ⊢ [i]φ

H [i]φ,Γ ⊢ [i]ψ
[i] ⊃ I

H Γ ⊢ [i](φ ⊃ ψ)

H0 Γ,∆0 ⊢ [i](φ ⊃ ψ) H1 Γ,∆1 ⊢ [i]φ
[i] ⊃ E

H0 H1 Γ,∆0,∆1 ⊢ [i]ψ

H Γ ⊢ [i](φ ∧ ψ)
[i] ∧ E0

H Γ ⊢ [i]φ

H Γ ⊢ [i](φ ∧ ψ)
[i] ∧ E1

H Γ ⊢ [i]ψ

H Γ ⊢ [i]φ
[i] ∨ I0

H Γ ⊢ [i](φ ∨ ψ)

H Γ ⊢ [i]ψ
[i] ∨ I1

H Γ ⊢ [i](φ ∨ ψ)

H0 Γ,∆0 ⊢ [i](φ ∨ ψ) H1 [i]φ,Γ,∆1 ⊢ [i]θ H2 [i]ψ,Γ,∆2 ⊢ [i]θ
[i] ∨ E

H0 H1 H2 Γ,∆0,∆1,∆2 ⊢ [i]θ

Figure 3.2: The underlying logic. Metavariables φ+ and ψ+ stand for global formulae.

Metavariables i and j stand for processes. For the use of ⊔, see Section 1.2. H
stands for a possibly empty hypersequent. H+ stands for a nonempty hypersequent.

Γ and ∆ stand for possibly empty contexts. In the names of the rules, I at the end

stands for introduction and E for elimination. For the structural rules, E stands for

exchange, W for weakening and C for contraction. The I’s in front stand for internal

and E for external. A rule [i] ∧ I is omitted because the inner global rule ∧I is more

general. There is no disjunction elimination in the inner global rules lest it is difficult

(if possible) to translate the rule into waitfree computation.
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defined elementwise: i.e., the result of the substitution M+[N/x] maps a process i to

(M+(i))[N/x]. A closed global term is a global term whose image only contains closed

local terms. Informally, the local terms represent parts of programs executed by the

processes. Especially, (∗→c
←c)t and ∗←c cause processes to communicate.

Using these terms, we annotate the hypersequent system in Figure 3.2. We extend

a sequent to Γ ⊢M+ :φ+, where Γ is a sequence like x : [i]ψ, y : [j]θ and M+ is a global

term. In a sequent Γ ⊢ M+ :φ+, we require the variables in Γ to be distinct from

each other. We do not allow a context to contain both x : [0]I and x : [1]I, or even

x : [0]I twice. An (extended) hypersequent is a finite sequence of sequents (each called

a component) where the same variable has the same type even if it appears in different

components. The typing rules for the terms are given in Figure 3.3. For example, the

proof in Figure 3.1 can be annotated as in Figure 3.4. Each derivation has a unique

hypersequent at the bottom, which is called the endhypersequent of the derivation. A

hypersequent is derivable when there is a derivation whose endsequent is identical to

the hypersequent.

Example 3.2.2 (A typing of a global term.) The global term

{0 7→ [⟨(∗→d
←c)x, x⟩, x], 1 7→ [⟨(∗→c

←d)y, y⟩, y]}

can be typed (Figure 3.5).

3.2.3 Reduction

A hyperterm O is a nonempty sequence of global terms. From a hypersequent Γ0 ⊢
M0

+ :φ0
+ · · · Γn ⊢Mn

+ :φn
+, we can construct a hyperterm (Mi

+)0≤i≤n. The

hyperterm (Mi
+)0≤i≤n is typable when the aforementioned hypersequent is derivable

for some Γi’s and φi
+’s.

A store maps a location to a pure, closed term or ϵ, where a pure term is a term

without ∗→c
←c or ∗←c. For a store S, the updated store S[c 7→ x] maps c to x and d

to S(d) if d is different from c. A configuration is a pair (S,O) of a store S and a

hyperterm O. A typed configuration is a configuration (ϵ,O) where ϵ is the empty

store and O is a typable hypersequent.

To complete the definition of λ-GD, we define the reductions ⇝♠ of configurations

for ♠ ∈ {B,W,R,A,P}, where B stands for basic, W for write, R for read, A for

abort and P for permutative reductions. We consider terms up to α-equivalence and

implicitly require all instances of ⇝♠ to avoid free variable captures.
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O0 Γ ⊢ {i 7→M} : [i]φ O1 ∆ ⊢ {j 7→ N} : [j]ψ
com

O0 O1 Γ ⊢ {i 7→ (∗→d
←c)M} : [i]ψ ∆ ⊢ {j 7→ (∗→c

←d)N} : [j]φ
where locations c and d are fresh and no location is contained in both of the two branches.

O Γ ⊢ (Mi)i∈I : (φi)i∈I Γ ⊢ (Ni)i∈I : (φi)i∈I
EC

O Γ ⊢ ([Mi, Ni])i∈I : (φi)i∈I

O+

EW
O+ Γ ⊢ {} :φ+

O Γ ⊢M+ : φ+ ∆ ⊢ N+ : ψ+ O′
EE

O ∆ ⊢ N+ : ψ+ Γ ⊢M+ : φ+ O′

O Γ ⊢M+ :φ+

IW
O x : [i]ψ,Γ ⊢M+ :φ+

O x : [i]φ, y : [i]φ,Γ ⊢M+ :ψ+

IC
O x : [i]φ,Γ ⊢M+[x/y] :ψ+

O Γ, x : [i]φ, y : [j]ψ,∆ ⊢M+ :θ+

IE
O Γ, y : [j]ψ, x : [i]φ,∆ ⊢M+ :θ+

O0 Γ,∆0 ⊢ (Mi)i∈I : (φi)i∈I O1 Γ,∆1 ⊢ (Nj)j∈J : (ψj)j∈J
∧I

O0 O1 Γ,∆0,∆1 ⊢
(⟨Mk, Nk⟩)k∈I∩J ⊔ (Mi)i∈I\J ⊔ (Nj)j∈J\I : (φk ∧ ψk)k∈I∩J ⊔ (φi)i∈I\J ⊔ (ψj)j∈J\I

O Γ ⊢ (Mi)i∈I : (φi)i∈I
∧E

O Γ ⊢ (Mj)j∈J : (φj)j∈J
where J is a subset of I.

[i]Ax
x : [i]φ,Γ ⊢ {i 7→ x} : [i]φ

O Γ ⊢ {i 7→M} : [i]⊥
[i]⊥E

O Γ ⊢ {i 7→ abort } : [i]φ

O x : [i]φ,Γ ⊢ {i 7→M} : [i]ψ
[i] ⊃ I

O Γ ⊢ {i 7→ λx.M} : [i](φ ⊃ ψ)

O0 Γ,∆0 ⊢ {i 7→M} : [i](φ ⊃ ψ) O1 Γ,∆1 ⊢ {i 7→ N} : [i]φ
[i] ⊃ E

O0 O1 Γ,∆0,∆1 ⊢ {i 7→MN} : [i]ψ

O Γ ⊢ {i 7→M} : [i](φ ∧ ψ)
[i] ∧ E0

O Γ ⊢ {i 7→ πl (M)} : [i]φ

O Γ ⊢ {i 7→M} : [i](φ ∧ ψ)
[i] ∧ E1

O Γ ⊢ {i 7→ πr (M)} : [i]ψ

O Γ ⊢ {i 7→M} : [i]φ
[i] ∨ I0

O Γ ⊢ {i 7→ inl (M)} : [i](φ ∨ ψ)

O Γ ⊢ {i 7→M} : [i]ψ
[i] ∨ I1

O Γ ⊢ {i 7→ inr (M)} : [i](φ ∨ ψ)

O0 Γ,∆0 ⊢ {i 7→M} : [i](φ ∨ ψ)

O1 x : [i]φ,Γ,∆1 ⊢ {i 7→ N0} : [i]θ

O2 y : [i]ψ,Γ,∆2 ⊢ {i 7→ N1} : [i]θ
[i] ∨ E

O0 O1 O2 Γ,∆0,∆1,∆2 ⊢ {i 7→ matchM of inl(x).N0/inr(y).N1} : [i]θ

Figure 3.3: Term assignment on the λ-GD type system. Metavariable M+ stands for

global terms. O stands for a possibly empty hypersequent (with possible subscripts).

O+ stands for a non-empty hypersequent.
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We require all reductions to be congruences. A binary relation R on configurations

is a congruence when

• (S0,O0)R(S1,O1) implies

(S0,O0 O)R(S1,O1 O),

• (S0,O0 M0
+)R(S1,O1 M1

+) implies

(S0,O0 M0
+ ⊔N+)R(S1,O1 M1

+ ⊔N+)

• (S0,O0 {i 7→M0} ⊔M0
+)R(S1,O1 {i 7→M1} ⊔M1

+) implies

(S0,O0 {i 7→ C[M0]} ⊔M0
+)R(S1,O1 {i 7→ C[M1]} ⊔M1

+) for any con-

text C

• (S,O0 M+ N+ O1)R(S′,O′) implies

(S,O0 N+ M+ O1)R(S′,O′) and

• (S,O)R(S′,O0 M+ N+ O1) implies

(S,O)R(S′,O0 N+ M+ O1).

Although only singleton terms appear in these clauses, by congruence, these rules are

applicable to more complicated global terms.

The first kind of reductions, basic reductions, are what one would expect from typed

lambda calculi based on intuitionistic propositional logic with implication, conjunction

and disjunction.

Definition 3.2.3 (Basic reduction) The basic reduction ⇝B is the smallest con-

gruence containing the followings:

• (S, {i 7→ (λx.M)N})⇝B (S, {i 7→M [N/x]})

• (S, {i 7→ πl (⟨M,N⟩)})⇝B (S, {i 7→M})

• (S, {i 7→ πr (⟨M,N⟩)})⇝B (S, {i 7→ N})

• (S, {i 7→ match (inl (M)) of inl(x).N/inr(y).O})⇝B (S, {i 7→ N [M/x]})

• (S, {i 7→ match (inr (M)) of inl(x).N/inr(y).O})⇝B (S, {i 7→ O[M/y]})

There are two sorts of reductions that interact with the store. In summary, ∗→d
←c

tries to write to d and read from c in the store of the configuration. If a term writes

to an empty location, the location is filled with the local term written by the term.

If a term writes to a full location of a store, it does not abort but the store is not

updated. In fact, the contents of locations are never updated after being written.
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This property will be used in the proof of Theorem 3.2.11 (Strong normalization).

The formal definition of the reductions follows.

Definition 3.2.4 (Write reduction) The write reduction ⇝W is the smallest con-

gruence containing the followings:

• (S[c 7→ ϵ], {i 7→ (∗→c
←d)M})⇝W (S[c 7→M ], {i 7→ ∗←d}) whereM is a pure, closed

term

• (S[c 7→ N ], {i 7→ (∗→c
←d)M})⇝W (S[c 7→ N ], {i 7→ ∗←d}) whereM is a pure, closed

term.

In the first clause of this definition of write reductions, we require M to be a pure,

closed term because a store can only contain pure, closed terms. This restriction on

store contents comes from our aim of modeling asynchronous communication. If we

allow stores to contain terms with free variables, the term (λx.(∗→d
←cx))M can store x

in the store and another process can read x from the store. After that, if (λx. · · · )M
reduces, then, x becomes M suddenly in the other process. We want to avoid such

synchronous communication.

We require the same condition in the second clause as well although the store

contents are not changed in the second clause. Otherwise, in order to judge whether a

configuration admits a write reduction or not, we have to inspect the contents of the

store. This would make the implementation more complicated. More technically, the

definition of normal forms would depend on the store contents, which we avoided.

After the communicating term (∗→d
←c) writes to the memory, the term changes into

a reader ∗←c. When the reader ∗←c tries to read when c is full, the reader is replaced

with the content of the location c. If a reader tries to read from an empty location of

a store, the reader changes into abort .

Definition 3.2.5 (Read reduction) The read reduction ⇝R is the smallest congru-

ence containing the followings:

• (S[c 7→M ], {i 7→ ∗←c})⇝R (S[c 7→M ], {i 7→M})

• (S[c 7→ ϵ], {i 7→ ∗←c})⇝R (S[c 7→ ϵ], {i 7→ abort })

The special term abort means failure, so, a term containing abort , except [M,N ],

also reduces to abort . The concurrent construction [M,N ] runs M and N concurrently

and throws away those subterms that reduce to abort . To be specific, the term [M,N ]

reduces to M or N . The reduction rules are not symmetric with regard to the left
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component and the right component of the concurrent construct [M,N ] because when

both components succeed, the whole construct reduces to the left component.

Definition 3.2.6 (Abort propagation reduction) The abort propagation reduc-

tion ⇝A is the smallest congruence containing the followings:

• (S, {i 7→ [abort ,M ]})⇝A (S, {i 7→M});

• (S, {i 7→ [M, abort ]})⇝A (S, {i 7→M});

• (S, {i 7→ [M,N ]})⇝A (S, {i 7→M}) where M and N do not contain abort , ∗→d
←c

or ∗←c for any locations c, d;

• (S, {i 7→ C[abort ]})⇝A (S, {i 7→ abort }) where C[•] is defined by BNF:

C[•] ::=• | C[•]N |MC[•] | (∗→c
←c)C[•] | inl (C[•]) | inr (C[•]) | ⟨C[•], N⟩ |

⟨M,C[•]⟩ | π□
i C[•] | matchM of inl(x).N/inr(y).C[•] |

matchC[•] of inl(x).N/inr(y).O | matchM of inl(x).C[•]/inr(y).O

For example, the configuration (S, [abort , abort ]) reduces to (S, abort ).

In order to avoid the situation where computation is blocked by a syntactic barri-

cade, we add yet another kind of reduction rules called permutative reductions2.

Definition 3.2.7 (Permutative reduction) The permutative reduction ⇝P is the

smallest congruence containing the followings:

• (S, {i 7→ (matchM of inl(x).N/inr(y).O)P})⇝P

(S, {i 7→ matchM of inl(x).NP/inr(y).OP})

• (S, {i 7→ πd (matchM of inl(x).N/inr(y).O)})⇝P

(S, {i 7→ matchM of inl(x).πdN/inr(y).πdO})

• (S, {i 7→ match (matchM of inl(x).N/inr(y).O) of inl(u).P/inr(v).Q})⇝P

(S, {i 7→ matchM of inl (x) .(matchN of inl(u).P/inr(v).Q)/

inr (y) .(matchO of inl(u).P/inr(v).Q)})

• (S, {i 7→ [M,N ]P})⇝P (S, {i 7→ [MP,NP ]})

• (S, {i 7→ πd[M,N ]})⇝P (S, {i 7→ [πdM,πdN ]})

• (S, {i 7→ match [M,N ] of inl(x).P/inr(y).Q})⇝P

(S, {i 7→ [matchM of inl(x).P/inr(y).Q,matchN of inl(x).P/inr(y).Q]})

2The “permutative” conversions can be found in Prawitz [119].
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We define ⇝ to be the union of ⇝B, ⇝W, ⇝R, ⇝A and ⇝P. The reflexive

transitive closure of ⇝ is written as ⇝∗. A redex is a subterm that can be rewritten

by a reduction. A configuration C is normal when there is no configuration D with

C ⇝ D. A term M is normal when the configuration (S,M) is a normal configuration

(the choice of S is irrelevant).

Example 3.2.8 (Reductions of λ-GD) We take the term shown in Figure 3.5 and

replace x and y with pure, closed terms v and w. Below, an underlined subterm is a

redex: (
{}, {0 7→ [⟨(∗→d

←c)v, v⟩, v], 1 7→ [⟨(∗→c
←d)w,w⟩, w]

)
⇝W

(
{d 7→ v}, {0 7→ [⟨∗←c, v⟩, v], 1 7→ [⟨(∗→c

←d)w,w⟩, w]}
)

⇝R

(
{d 7→ v}, {0 7→ [⟨abort , v⟩, v], 1 7→ [⟨(∗→c

←d)w,w⟩, w]}
)

⇝A

(
{d 7→ v}, {0 7→ [abort , v], 1 7→ [⟨(∗→d

←c)w,w⟩, w]}
)

⇝A

(
{d 7→ v}, {0 7→ v, 1 7→ [⟨(∗→c

←d)w,w⟩, w]}
)

⇝W

(
{c 7→ w, d 7→ v}, {0 7→ v, 1 7→ [⟨∗←d, w⟩, w]}

)
⇝R

(
{c 7→ w, d 7→ v}, {0 7→ v, 1 7→ [⟨v, w⟩, w]}

)
⇝A ({c 7→ w, d 7→ v}, {0 7→ v, 1 7→ ⟨v, w⟩}) .

The overall effect is the transfer of term v from process 0 to process 1. In the beginning,

v only appears in process 0’s local term but not in process 1’s local term. In the end,

the term v appears in both processes’ local terms. From the first line to the second

line, process 0’s communication term succeeds in writing term v to location d. From

the second line to the third line, process 0 fails to read from location c so that a

reader construct is turned into an abort . This failure occurs because process 0 tries to

read before process 1 writes. In a different scheduling (or, evaluation strategy) such

a failure can be avoided. This kind of nondeterminism is essential to characterize

waitfreedom later. From the third line to the fourth line, the abort in process 0’s

subterm is propagated so that the whole pair containing abort is turned into abort .

From the fourth line to the fifth line, the aborted subterm in process 0 is thrown away:

this is the main functionality of the concurrent construction [M,N ]. From the fifth

line to the sixth line, process 1 writes to location c. From the sixth line to the seventh

line, process 1 reads what process 0 wrote. In this case, the reader in process 1 does not

yield abort but outputs a previous content of the store. From the seventh line to the

last line, the right side component w of [⟨v, w⟩, w] is thrown away: we chose to throw

away the right hand side component when both sides of [M,N ] contain no abort . When
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we view the concurrent construction [M,N ] as a representation of external contraction

rule, this asymmetry is strange, but the asymmetry plays a significant role in encoding

waitfree computation in our calculus.

3.2.4 Properties

An important property of λ-GD is strong normalization: every typed hyperterm has a

finite, maximum number of ensuing reductions. Another property is non-abortfullness:

although some reductions yield abort terms, a typed hyperterm never reduces to a

hyperterm that only contains abort ’s. We show the second property first because its

proof is simpler.

Theorem 3.2.9 (Non-abortfullness of λ-GD) All normal forms of a typed con-

figuration contain at least one term that is not abort .

Proof When a reduction sequence is fixed, for any locations c and d, depending on

whether c or d is filled first, either: (i) no ∗←d ⇝ abort occurs, or (ii) no ∗←c ⇝ abort

occurs.

In case (i), we can rewrite a communication rule occurrence

O0 Γ,∆ ⊢ {i 7→M} : [i]ψ O1 Γ,∆ ⊢ {j 7→ N} : [j]τ

O0 O1 Γ ⊢ {i 7→ (∗→d
←c)M} : [i]τ ∆ ⊢ {j 7→ (∗→c

←d)N} : [j]ψ

into a weakening occurrence (using Proposition 3.2.10 proved below)

O0 Γj ,∆j ⊢ {j 7→M} : [j]ψ

O0 ⊢ {i 7→ abort } : [i]τ Γj ,∆j ⊢ {j 7→M} : [j]ψ

where Γj denotes the context obtained by replacing every modality in Γ with j. In

case (ii), we can do the symmetric.

After these rewritings for all appearing locations, we obtain a derivation not con-

taining any locations. Moreover, the endhypersequent of the rewritten derivation has

a component not containing abort . The reductions of the original hyperterm can

be simulated by the rewritten hyperterm. And, even after reductions, the resulting

hyperterm has a component not containing abort . ■

In order to justify the renaming operation appearing in the proof of Theorem 3.2.9,

we first define the renaming operation on global types. Of a global type φ+ = (φi)i∈I

(the global type that maps i to φi), the j-replacement φ+j is {j 7→
∧

i∈I(φi)}. For

example, the 1-replacement of [0]⊥ is [0]⊥1 = [1]⊥.

For a context Γ = x0 : [i0]φ0, x1 : [i1]φ1, x2 : [i2]φ2, . . . , xn : [in]φn, the j-replacement

Γj is x0 : [j]φ0, x1 : [j]φ1, x2 : [j]φ2, . . . , xn : [j]φn.
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Proposition 3.2.10 (Process renaming) When O Γ0,∆0 ⊢ M+ :φ+ is deriv-

able,

O Γm
0 ,∆

m
0 ⊢ {m 7→M ′} :φ+m

is also derivable for some local term M ′.

Proof By induction on the height of derivation. All rules except com and EC are

trivial because they do not interact with the modalities. For the EC rule, we have to

apply the induction hypothesis twice to change modalities in two components. For the

com rule, let us assume the derivation ends in the com rule as:

O0 Γ ⊢M : [i]φ O1 ∆ ⊢ N : [j]ψ

O0 O1 Γ ⊢ (∗→d
←c)M : [i]ψ ∆ ⊢ (∗→c

←d)N : [j]φ
.

We have to consider three cases: first, when Γ0,∆0 ⊢ M+ :φ+ in the statement is

in [O0,O1]; second, when Γ0,∆0 ⊢ M+ :φ+ in the statement is identical to Γ ⊢
(∗→d
←c)M : [i]ψ; and third, when Γ0,∆0 ⊢ M+ :φ+ in the statement is identical to

∆ ⊢ (∗→c
←d)N : [j]φ. The second and third cases are symmetric. In the first case, M+ is

actually a concurrent construct ([Pi, Qi])i∈I . We can apply the induction hypothesis

to P and Q and combine them again {m 7→ [P ′, Q′]}. In the second case, we can use

the induction hypothesis on the left branch3. ■

Strong Normalization

For proving strong normalization, we use an auxiliary relation, which is similar to the

reduction ⇝. We denote the relation by ;. The ; relation (symmetric reduction)

is also a congruence. All reductions are symmetric reductions. In addition to reduc-

tions, symmetric reductions contain pairs like [M,N ] ; N when N does not contain

any abort , ∗→d
←c or ∗←c. Ordinary reductions are not symmetric because it allows

(S, {i 7→ [M,N ]}) ⇝A (S, {i 7→M}) but not (S, {i 7→ [M,N ]}) ⇝A (S, {i 7→ N}).
This asymmetry allows us to encode waitfree computation in our calculus. However,

it is easier to prove strong normalization for the symmetric reductions. When strong

normalization for the symmetric reductions holds, the same property holds for the

reductions because there are less pairs in reductions than in symmetric reductions.

3One crucial thing is our choice of the form of the com rule. If we use the com’ rule by Avron [8],

the proof does not proceed because the contexts Γ and ∆ are duplicated as

O0 Γ,∆ ⊢M : [i]φ O1 Γ,∆ ⊢ N : [j]ψ

O0 O1 Γ ⊢ (∗→d
←c)M : [i]ψ ∆ ⊢ (∗→c

←d)N : [j]φ
.

There, if we want to change the modalities in the rightmost component naively, we also have to change

the modalities in the second rightmost component.
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Theorem 3.2.11 (Strong normalization of λ-GD) λ-GD is strongly normaliz-

ing.

Proof For proving this, we consider the pure fragment that does not contain (∗→d
←c)M ,

(∗→c
←d)N . We first reduce the strong normalization of the λ-GD to that of the pure

fragment, and ultimately to that of de Groote’s natural deduction with permutation-

conversion [41]4.

We assume an infinitely long sequence of reductions, namely, (S0,O0)⇝ (S1,O1)⇝
(S2,O2) ⇝ · · · . From this, we are going to construct an infinitely long sequence of

symmetric reductions in the pure fragment.

For that, we first build an infinite reduction sequence with constant stores. Using

the original infinite sequence, we define a store called the store prophecy S∞ where

S∞(c) is defined to be ϵ if Sk(c) = ϵ holds for all k ∈ ω and S∞(c) is defined to be M

if Sk(c) = M holds for some k ∈ ω. Since store contents are never overwritten, S∞ is

well defined. Moreover, Si(c) and S∞(c) coincide unless Si(c) = ϵ.

We build another reduction sequence (S∞,O0)⇝∗ (S∞,O′1)⇝∗ (S∞,O′2)⇝∗ · · ·
with the following invariant: O′i can be obtained by replacing some abort occurrences

in Oi with some terms. More specifically, we translate each reduction as follows,

keeping the invariant inductively on the number of steps (the base case is satisfied by

O′0 = O0 immediately):

• a read reduction (Sk, C [∗←c])⇝R (Sk+1, C [O]) is translated into (S∞, C′ [∗←c])⇝R

(Sk+1, C′ [O′]) for a context C′. If Si(c) is a term, S∞(c) and O′ are also identical

to the term. Otherwise, O′ must be abort . Thus, the invariant holds for k + 1.

• a write reduction (S[c 7→ ϵ], C [(∗→c
←d)M ]) ⇝W (S[c 7→M ], C [∗←d]) is translated

into (S∞, C′ [(∗→c
←d)M ])⇝W (S∞, C′ [∗←d]);

• an abort reduction of the form (Sk, C [C[abort ]]) ⇝A (Sk+1, C [abort ]) can be

translated either to a similar reduction or no reduction if the abort in the redex

is replaced by another term in the O′k. Note that even in that case, the result

O′k+1 can be obtained by replacing some abort occurrences in Ok+1 with other

terms;

• any other reduction (Sk, C [M ])⇝B/P (Sk+1, C [N ]) is translated into one similar

reduction (S∞, C′ [M ′])⇝B/P (S∞, C′ [N ′]).

4To the same effect, we might be able to use other strong normalization results for lambda calculi

with commutative conversions, like Balat, Di Cosmo and Fiore [15].
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Here, we have to show that the translated sequence of symmetric reductions is infinite.

For that, we can use the facts that there are only finite number of mentioned locations

and that each location allows only one write, and that an abort propagation always

strictly shortens the term under operation.

After that, we can replace every ∗←c with S∞(c). Since ∗←c either reduces to

S∞(c) or abort , replacing it with S∞(c) will only “shorten” the reduction sequence

for at most one read step. Replacing all readers makes an infinite reduction sequence

in the pure fragment. Moreover, the result of the translation is also well typed5. A

typing derivation of the resulting hyperterm can be obtained by replacing com rules

with EW rules and changing the process number in global types of some variables (c.f.

the proof of Theorem 3.2.9).

We are aiming at reducing the problem to the strong normalization result by de

Groote [41]. Since we have eliminated (∗→d
←c)M and (∗→c

←d)N occurrences, the remain-

ing difference from de Groote’s lambda calculus [41] is small: some abort propagation

reductions and some permutative reductions involving [M,N ]. We just have to make

sure that there are no infinite reduction sequences that consist of only these two kinds

of reductions. We can deal with the permutative reductions following de Groote [41]’s

strategy for introducing ⊥. There are no infinite sequence of abort propagation reduc-

tions keeping the number of [M,N ] constructions; and an abort propagation reduction

cannot increase the number of [M,N ] constructions in a configuration. Combined,

there are no infinite sequence of abort propagation reductions. ■

Strong normalization and non-abortfullness hold even for reductions where ∗→d
←c

operators are copied or discarded. This is different from the situation in Chapter 2

where discarding term c causes the peer c̄ to deadlock. This is the reason why we can

use intuitionistic propositional logic rather than linear (or affine) logics in this chapter.

3.3 Typed Waitfreedom

Waitfree protocols [70, 125] are a class of protocols that can solve some of the input-

output problems [19, 110]. If a waitfree protocol solves an input-output problem,

then we call the protocol to be in the waitfreedom. We define the typed version of

waitfreedom. Since these definitions are involved, we supply many examples.

5Because each channel c is uniquely associated with a type φ in the original derivation and S∞(c)

is a closed term of type φ.

78



3.3.1 Typed Input-Output Problem

Saks and Zaharoglou [125] formulated waitfreedom as a class of input-output problems.

Given inputs for all processes and outputs of all processes, an input-output problem

decides whether the processes have succeeded or not. We change the standard defini-

tion and have typed terms as inputs and outputs. This change is necessary because

according to the original definition of waitfreedom, a single process waitfree protocol

can solve any undecidable problem because a waitfree protocol can contain arbitrary

functions.

In order to define the set of inputs and outputs, we let T −(φ) denote the set of

closed, pure terms of type φ, and V−(φ) denote the set of normal terms in T −(φ).

For a finite set of processes P, a typed input-output problem consists of each process’s

input type (ιi)i∈P, each process’s output type (oi)i∈P, and a task R ⊆
∏

i∈P (T −(ιi))×∏
i∈P (V−(oi)). In words, a task R decides whether a pair of inputs and outputs is

good or not.

Example 3.3.1 (The addition problem) Let the set P be {0, 1}, the types ι0, ι1,

o0 and o1 be natural numbers6. Now we can define a task requiring at least one of the

processes outputs the addition of the inputs. Specifically,

R+ ={⟨{0 7→ x, 1 7→ y}, {0 7→ (x+ y), 1 7→ z}⟩ | x, y, z ∈ N}

∪ {⟨{0 7→ x, 1 7→ y}, {0 7→ z, 1 7→ (x+ y)}⟩ | x, y, z ∈ N} .

The equation above says the task R+ allows two different kinds of behavior. The first

clause says if process 0 receives x and process 1 receives y as their inputs, and process 0

outputs x+y; then whatever process 1 outputs, the two processes are considered to have

solved the task. The second clause poses a symmetric condition where the two processes

are swapped. In order to solve the task R+, it is enough for one of the two processes

to give the correct answer.

Example 3.3.2 (The exchange problem) There is another problem that requires

two processes to exchange their inputs. Namely,

Rexch ={⟨{0 7→ x, 1 7→ y}, {0 7→ y, 1 7→ x}⟩ | x, y ∈ {tt, ff}} .

6Actually, the type of natural numbers is not definable in our language. However, since we can

define a three-valued type, we can make the same argument below using Z/3 instead of natural

numbers.
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3.3.2 Typed Protocols

We assume a finite set P of processes and a countably infinite set of program variables

ProV = {x, y, z, . . .}. Program variables are typeset in the typewriter font. We assume

an injection from variables to program variables x 7→ xx, whose image leaves infinitely

many unused program variables.

A program is defined by BNF:

p ::= ϵ | x← E; p | c← E; p

where c is a location and an expression E is

E ::= x | x | c | (EE) | λx.E | ⟨E,E⟩ | inl (E) | inr (E) |

πl (E) | πr (E) | matchE of inl(x).E/inr(y).E | ϵ .

Here, the expression ϵ is used as the initial placeholder of the shared memory.

A program is well formed when any program variable x (resp. location c) first

appears in a x← E (resp. c← E) sentence where E does not contain x (resp. c), and

after that, only appears in expressions. In other words, a well-formed program is in

the single assignment form.

A contexted type Γ ⊢ φ+ is a sequent without a term but with variables in Γ. For

a contexted type (Γ ⊢ φ+), we write M : (Γ ⊢ φ+) for Γ ⊢ M :φ+. For input types

(ιi)i∈P and output types (oi)i∈P, a typed protocol7 has:

• two program variables ii and oi for each process i;

• a finite set of locations C;

• two functions w : C → P and r : C → P (specifying the writer and the reader of

each location);

• W : maps a location in C to a contexted type;

• V : a finite set of program variables that contains ii’s and oi’s;

• a function ti for each i ∈ P that maps a program variable in V to a contexted

type (xk : [i]φk)k ⊢ [i]φ with a special condition ti(ii) = ιi;

• a typed program pi for each i ∈ P, where a typed program is a well-formed

program where all sentences are typed according to the rules below. A sentence

7We formulated this definition as close as we can to the definition of waitfree protocols in Saks

and Zaharoglou [126, 2.3.].
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x ← E is typed iff ⊢ E : [i]ti(x) is derivable with assumptions of the form ⊢
y : [i]ti(y) and ⊢ c :W (c). A sentence c← E is typed iff ⊢ E : [i]W (c) is derivable

with assumptions of the form ⊢ y : [i]t(y) and ⊢ c : [i]W (c).

Example 3.3.3 (The addition protocol) We give a concrete typed protocol that

solves the addition task (Example 3.3.1). The set C of locations contains two elements

c and d. The locations c and d will be used as follows: process 0 writes to d and reads

from c, and process 1 writes to c and reads from d. Formally, w(c) = 1, w(d) = 0,

r(c) = 0 and r(d) = 1. Both locations will contain natural numbers. Formally,

W (c) = W (d) = N. The set of program variables V is just {i0, i1, o0, o1}. The

typed programs are

p0 = d← i0; o0 ← add(c, i0); o0 ← i0 and

p1 = c← i1; o1 ← add(d, i1); o1 ← i1

where add(M,N) is a specially introduced8 term that reduce to the sum. The last two

sentences of each program write to the same variable. Although a variable is never

updated after being filled, the second write is still meaningful because the first write

may fail. We omit the type assignments t0, t1 and typing derivations.

3.3.3 Typed Waitfree Computation

We define when a typed protocol solves a typed input-output problem. This def-

inition is obtained by modifying Saks and Zaharoglou’s definition of input-output

problems [125].

A closed local term M is of type φ iff there is a derivation of ⊢ {0 7→M} : [0]φ. Let

P be {0, . . . , n− 1} and fix a typed protocol. We are going to define a virtual machine

for executing the typed protocol. In order to do that, we first define snapshots of the

virtual machine. After this, we will define the transition from snapshots to snapshots.

Definition 3.3.4 A program variable content for i ∈ P is a partial function that maps

a program variable to a closed local term of ti(x). A global term M+ is of a contexted

type Γ ⊢ φ+ when Γ ⊢ M+ :φ+ is derivable. A process snapshot of i ∈ P is a tuple

⟨p,m⟩ where p is either a program or abort and m is a program variable content for i.

We let Si denote the set of process snapshots for i. A system snapshot is a pair ⟨−→s ,−→v ⟩
of process snapshots and a shared memory snapshot, where −→s = ⟨s0, s1, . . . , sn−1⟩ ∈∏

i∈P (Si) and −→v = (vc)c∈C ∈
∏

c∈C(V(W (c)) ∪ {ϵ}).
8If we choose Z/3, we do not need to introduce a special term, but we can define addition using

nested match constructs.
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Definition 3.3.5 For a nonempty subset J of P, we define an operator ◁ J that

takes a system snapshot and produces a system snapshot. This operator depicts a

computational step where the processes in J are fired.

We define (−→s ,−→v ) ◁ J = (−→u ,−→m) by defining ui and mc for i ∈ P and c ∈ C. Let

si be ⟨p, x⟩: when i is not in J , ui is identical to si; otherwise, when i is in J :

ui =



⟨p′, x⟩ (if p = c← E; p′ and JEKx,−→v = ϵ)

⟨p′, x[x 7→ JEKx,−→v ]⟩ (if p = x← E; p′, x(x) = ϵ and JEKx,−→v ̸= ϵ)

⟨p′, x⟩ (if p = x← E; p′ but x(x) ̸= ϵ or JEKx,−→v = ϵ)

⟨ϵ, x⟩ (if p = ϵ)

mc =

JEKx,−→v (if p = c← E; p′, w(c) = i and vc = ϵ)

vc (otherwise)

with the following notations. The term JEKx,−→v is defined as the unique normal form of

the local term E[x(−→y )/−→y ][−→vc/−→c ], where every program variable y is replaced by x(y)

and every location c is replaced by vc. If any of the substitutes is ϵ, JEKx,−→v is defined

to be ϵ.

Definition 3.3.6 A block is a nonempty subset of P. A schedule is an infinite sequence

of blocks, which looks like σ = σ0σ1σ2 · · · . We say i is non-faulty (resp. faulty) in σ if

it appears infinitely (resp. only finitely many) often. When every process is non-faulty,

the schedule is fair.

Example 3.3.7 (An example of schedules) When P is a singleton {0}, there is

only one schedule ({0}, {0}, {0}, . . .) where “. . .” contains only {0}’s. Since 0 is the

only process and 0 is non-faulty, this schedule is fair.

Assume P = {0, 1}. There is a schedule which is not fair: ({0}, {0}, {0}, . . .) where

“. . .” contains only {0}’s. Even when we add a finite prefix to an unfair schedule, the

schedule is still not fair because no process can appear infinitely often in that finite

prefix.

Obviously, when a schedule contains infinitely many {0, 1}’s, then the schedule is

fair. Not only that, but when a schedule contains infinitely many {0}’s and infinitely

many {1}’s, then the schedule is fair. In the other direction, a fair schedule must

satisfy one of these conditions.
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Definition 3.3.8 A run is a triple ⟨Π,−→x , σ⟩, where Π is a typed protocol, −→x ∈∏
i∈P T −(ιi) is the input, and σ is a schedule. The execution associated to the run is

defined as the infinite sequence of system snapshots C0C1C2 · · · , where C0 = ⟨
−→
s0 ,
−→
v0⟩

is defined by
−→
s0i = ⟨pi, [ii 7→ xi]⟩ and vc = ϵ, and Ck+1 is defined to be Ck ◁ σk. Since

all programs are finite, the system snapshot will stay constant after initial finite steps.

We call that constant system snapshot the final system snapshot of an execution.

Example 3.3.9 (An example of a run and an execution) Let P be {0, 1} and Π

be the typed protocol given in Example 3.3.3. let us take x0 = 3 and x1 = 4. Also

we choose a schedule σ as {0}, {0}, {0, 1}, {1}, {1}, followed by an infinite sequence of

{0, 1}’s. The triple ⟨Π,−→x , σ⟩ constitutes a run.

We can associate an execution with this run. The initial system snapshot C0 =

⟨
−→
s0 ,
−→
v0⟩ contains process snapshots

s00 = ⟨p0, {i0 7→ 3}⟩ and s01 = ⟨p1, {i1 7→ 4}⟩

where p0 and p1 are defined in Example 3.3.3. In the system snapshot,
−→
v0 maps both lo-

cations c and d to ϵ. The next system snapshot C1 is defined to be C0 ◁ σ0. Since σ0 =

{0}, it does not contain 1. So, s11 is the same as s01. On the other hand, since p0 is d←
i0; o0 ← add(c, i0); o0 ← i0, s

1
0 is defined to be ⟨o0 ← add(c, i0); o0 ← i0, {i0 7→ 3}⟩

and v1d is defined to be 3. However, v1c is the same as v0c and thus remains to be ϵ. We

conclude that C1 = ⟨{0 7→ s10, 1 7→ s11}, {c 7→ ϵ, d 7→ 3}⟩. Again, the next snapshot C2

is defined to be C1 ◁ σ1. Since σ1 = {0}, process 1’s state is not changed so that s20 =

s10 = ⟨p1, {i1 7→ 4}⟩. On the other hand, since s10 = ⟨o0 ← add(c, i0); o0 ← i0, {i0 7→ 3}⟩
and 0 is in σ1, process 0’s state is updated to s20 = ⟨o0 ← i0, {i0 7→ 3}⟩ where the

process failed to read from the location c because v1c is ϵ. As a result, the program

variable oi obtained no assignments. The store contents are not updated either so that

v2c = v1c = ϵ and v2d = v1d = 3. After four more rounds (including i = 6 to confirm

C5 = C6), we obtain an execution shown in Table 3.1. Since Ci = C5 for i > 5, the

system snapshot C5 is the final system snapshot of this execution.

Definition 3.3.10 Process i’s output ôk at step k is M if the i-th process snapshot of

Ck is (p, x) and the x[oi] = M , which might be ϵ. The decision value of i on the run

⟨Π,−→x , σ⟩, denoted di ∈ V−(oi)∪ {ϵ} is the first non-ϵ output in the sequence (ôk)k∈ω,

or ϵ if such an output does not exist. The decision vector of the run is the n-tuple
−→
d

consists of decision value di’s.
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A vector
−→
b ∈

∏
i∈P(V−(oi)) is compatible with

−→
d ∈

∏
i∈P (V−(oi) ∪ {ϵ}) iff di = bi

or di = ϵ holds for any process i. For a task R, an input −→x ∈
∏

i∈P T −(ιi) is

R-permissible iff there is at least one vector
−→
b ∈

∏
i∈P(V−(oi)) with (−→x ,

−→
b ) ∈ R.

Definition 3.3.11 A typed protocol Π solves the typed input-output problem ⟨(ιi)i∈P, (oi)i∈P, R⟩
on schedule σ iff for all R-permissible inputs −→x and a schedule σ, the decision value of

every non-faulty process i is a term M not ϵ, and there is a vector
−→
b ∈

∏
i∈P(V−(oi))

with ⟨−→x ,
−→
b ⟩ ∈ R which is compatible with the decision vector

−→
d of the run ⟨Π,−→x , σ⟩.

A typed protocol is waitfree iff it solves the problem on every schedule σ. In that case,

the typed input-output problem is waitfreely solvable.

Example 3.3.12 (Permissible inputs and outputs) The compatible inputs for the

addition problem in Example 3.3.1 are pairs of natural numbers. For the input (3, 4),

the addition of the inputs is 7, but the addition problem requires at least one process

to output the sum. Moreover, when process 0 is faulty, process 0 is allowed to output

ϵ. In that case, whatever natural number process 1 outputs, the addition problem is

solved because any (ϵ, n)(n ∈ N) is compatible with some vector
−→
b in R+. In short, in

the addition problem, if one process outputs ϵ, the other process is allowed to output

whatever.

Example 3.3.13 (An example of a typed protocol solving the addition task)

In the execution in Table 3.1, we can replace 3 and 4 with any natural numbers and 7

with the sum. This shows that the typed protocol in Example 3.3.3 solves the addition

problem in Example 3.3.1 on the schedule

σ = ({0}, {0}, {0, 1}, {1}, {1}, {0, 1}, {0, 1}, . . .)

where the last “. . .” represents an infinite sequence consisting of {0, 1}’s. On the

schedule σ, both processes 0 and 1 are non-faulty. In Table 3.1, the decision value

of process 0 is d0 = 3 and the decision value of process 1 is d1 = 7. The tuple

⟨(x0, x1), (d0, d1)⟩ is in R+. The same argument goes for different (x0, x1)’s. Thus, the

typed protocol solves the addition problem on schedule σ. Actually, the typed protocol

solves the problem for all schedules. To see why, we can do case analysis on an

arbitrarily taken schedule: one case where all processes produce non-ϵ outputs and the

other case where one of the prcesses produces a non-ϵ output. There is no possibility

where no processes produce non-ϵ outputs because there are infinitely many blocks in

a schedule and each block contains at least one process (by definition of a block). In

the first case, when the first block contains 0, the execution proceeds like in Table 3.1.
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Otherwise, the first block must contain 1 so that the execution proceeds like Table 3.1

with 0 and 1 swapped. In either case, the typed protocol solves the task. In the second

case, the output producing process can produce whatever output to meet the task because

the other process produces ϵ.

Example 3.3.14 (A waitfreely unsolvable typed input-output problem) On the

other hand, there is no typed protocol that solves the exchange problem (Example 3.3.2).

To see the reason, take any typed protocol. There exist natural numbers m and n so

that the typed protocol contains m commands for process 0 and n commands for pro-

cess 1. Consider a schedule that consists of the first m blocks {0} and the following n

blocks {1} and the rest {0, 1}. Thus process 0 finishes before process 1 starts so that

process 0 cannot learn process 1’s input. Because of the infinitely many {0, 1}’s at the
tail, under the schedule, both processes are non-faulty so that they must produce the

correct outputs. However, since process 0 finishes before process 1 starts, there is no

way process 0 can output process 1’s input, not by chance. Even when process 0 pro-

duces the correct output by chance, when we change process 1’s input, then, process 0’s

output is wrong with regard to process 1’s new input.

3.4 Characterization of Waitfreedom by λ-GD

In this section, we show that the ability of the waitfree protocols and λ-GD are the

same.

Definition 3.4.1 A typed input-output problem ⟨(ιi)i∈P, (oi)i∈P, R⟩ is solvable by a

global term M+ of contexted type (xi : [i]ιi)i∈P ⊢ (oi)i∈P iff for any closed (Ni)i∈P of ιi,

all normal forms of M+[
−→
Ni/
−→xi ] are in the form (Vi)i∈P where ⟨(Ni)i∈P, (Vi)i∈P⟩ ∈ R.

Example 3.4.2 (A global term solving the addition problem) For the exclusive-

or problem (defined in Example 3.3.1), there is a global term {0 7→ [add((∗→d
←c)x0, x0), x0], 1 7→

[add((∗→c
←d)x1, x1), x1]} that solves the problem. The global term can be typed as in Fig-

ure 3.6.

Now we can state the most important results in this chapter.

Theorem 3.4.3 (Soundness of λ-GD with regard to waitfreedom) If a typed

input-output problem is solvable by a global term, there exists a typed protocol that

solves the problem.

In order to prove this theorem, we are going to translate a typed hyperterm into

a typed protocol inductively on the type derivations. To make induction work, we
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use the following auxiliary notion. An investigator is a partial map from processes to

program variables.

For a typed hyperterm O, we will give JOK, which is a tuple of programs indexed

by P. Also, we define LOM at the same time as JOK, where LOM is a sequence of

investigators. The length of LOM is the same as that of O. We refer to the last

element of LO MM as LO MM, the second to last element of LO M NM asLO M NM and so on.

Example 3.4.4 (Specifying elements of a sequence) Suppose LM+ N+M = {0 7→
x, 1 7→ y} {0 7→ z}. Then, LM+ N+M = {0 7→ z} and thus LM+ N+M(0) = z.

We let ϵ denote (pi = ϵ)i∈P. Also, (pi)i∈P; (qi)i∈P denotes (pi; qi)i∈P. And (p)j

denotes (qi)i∈P where qj = p and qi = ϵ for all i ̸= j. The definition is inductive over

the type derivations. What we do below is essentially compilation from lambda terms

to imperative programs9. After three pages, there is an example showing compilation

of a concrete λ-GD global term.

ij-com

JO0 O1 {i 7→ (∗→d
←c)M} {j 7→ (∗→c

←d)N}K
=JO0 {i 7→M}K; JO1 {j 7→ N}K;

(d← LO0 {i 7→M}M(i); x← c)i;

(c← LO1 {j 7→ N}M(j); y← d)j ,

LO0 O1 {i 7→ (∗→d
←c)M} {j 7→ (∗→c

←d)N}M
=LO0 {i 7→M}M LO1 {j 7→ N}M
{j 7→ y} {i 7→ x}

where x and y are new variables not used in induction hypotheses (we omit

writing this restriction on each case below),

EW

JO abort K = JOK , LO abort M =LOM ∅ ,

9That is one reason to try implementing it using Haskell in Chapter 5 because the Haskell compiler

takes care of lambda-to-imperative translation.

88



EC

JO ([Mi, Ni])i∈IK
=JO (Mi) (Ni)K;(

ki ← LO (Mi) (Ni)M(i); ki ← LO (Mi) (Ni)M(i))
i∈I

,

LO ([Mi, Ni])i∈IM = LO ([Mi, Ni])i∈IM {i 7→ ki}i∈I

EE

JO N+ M+ O′K =JO N+ M+ O′K
JO N+ M+ O′K
JO N+ M+ O′K
JO N+ M+ O′K ,

LO N+ M+ O′M =LO N+ M+ O′M
LO N+ M+ O′M
LO N+ M+ O′M
LO N+ M+ O′M ,

IC

JO M+[x/y]K = JO M+K JO M+K[xx/xy]

LO M+[x/y]M = LO M+M LO M+M[xx/xy]

[i]Ax

JxK =ϵ ,

LxM ={i 7→ ix} ,

[i]⊥E

JO {i 7→ abort }K =JO {i 7→M}K; (x← ϵ)i ,LO {i 7→ abort }M =LO {i 7→M}M {i 7→ x} ,

[i] ⊃ I

JO {i 7→ λx.M}K =JO {i 7→M}K;(z← λx.LO {i 7→M}M(i))
i
,

LO {i 7→ λx.M}M =LO {i 7→M}M {i 7→ z} ,

89



[i] ⊃ E

JO0 O1 {i 7→MN}K =JO0 {i 7→M}K; JO1 {i 7→ N}K;(
z← LO0 MM(i) LO1 NM(i))

i
,

LO0 O1 {i 7→MN}M =LO0 {i 7→M}M LO1 {i 7→ N}M {i 7→ z} ,

[i] ∧ E0

JO {i 7→ πl (M)}K =JO {i 7→M}K;(z← πl

(LO {i 7→M}M(i)))
i
,

LO {i 7→ πl (M)}M =LO {i 7→M}M {i 7→ z} ,

[i] ∧ E1

JO {i 7→ πr (M)}K =JO {i 7→M}K;(z← πr

(LO {i 7→M}M(i)))
i
,

LO {i 7→ πr (M)}M =LO {i 7→M}M {i 7→ z} ,

[i] ∨ I0

JO {i 7→ inl (M)}K =JO {i 7→M}K;(z← inl
(LO {i 7→M}M(i)))

i
,

LO {i 7→ inl (M)}M =LO {i 7→M}M {i 7→ z} ,

[i] ∨ I1

JO {i 7→ inr (M)}K =JO {i 7→M}K;(z← inr
(LO {i 7→M}M(i)))

i
,

LO {i 7→ inr (M)}M =LO {i 7→M}M {i 7→ z} ,

[i] ∨ E

JO0 O1 O2 {i 7→ matchM of inl(x).N0/inr(y).N1}K
=JO0 {i 7→M}K;(

xx ← match LO0 {i 7→M}M(i) of inl(z).z/inr(w).ϵ
)
i
; JO1 {i 7→ N0}K;(

xy ← match LO0 {i 7→M}M(i) of inl(z).ϵ/inr(w).w
)
i
; JO2 {i 7→ N1}K;(

k← matchLO0 {i 7→M}M(i)of
inl(z).LO1 {i 7→ N0}M(i)/inr(w).LO2 {i 7→ N1}M(i))

i
,

LO0 O1 O2 {i 7→ matchM of inl(x).N0/inr(y).N1}M
=LO0 {i 7→M}M LO1 {i 7→ N0}M LO2 {i 7→ N1}M {i 7→ k} .
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The rules IE and IW do not appear above because these rules do not change the form

of global terms. When (xi : [i]ιi)i∈P ⊢ M : (
∧∧

i∈P[i]oi) is derivable, we can define a

typed protocol using the above translation. We set ii to be xxi , oi to be arbitrarily

chosen fresh program variables, L to be the set of locations occurring in the derivation,

we set the family of programs to be JMK; (oi ← πi(LMM(i)))i∈P, where πi is obtained

by composing i times πr to πl. We set g, d, ti accordingly so that the program is typed.

This concludes the translation.

Example 3.4.5 (Translation of a typed term into a typed protocol) The typ-

ing derivation in Figure 3.6 can be translated as follows. We follow the derivation from

top to bottom. First we look at the top sequents and translate the typed terms:

J{0 7→ x}K = ϵ

L{0 7→ x}M = {0 7→ ix}J{1 7→ y}K = ϵ

L{1 7→ y}M = {1 7→ iy} .

Next we look one step10 below:

J{0 7→ (∗→d
←c)x} {1 7→ (∗→c

←d)y}K = (d← ix; y← c)0 ; (c← iy; x← d)1L{0 7→ (∗→d
←c)x} {1 7→ (∗→c

←d)y}M ={0 7→ y} {1 7→ x} .

And so on:

J{0 7→ add((∗→d
←c)x, x)} {1 7→ add((∗→c

←d)y, y)}K
= (d← ix; y← c)0 ; (c← iy; x← d)1 ; (z← add(y, ix))0 ; (w← add(x, iy))1L{0 7→ add((∗→d

←c)x, x)} {1 7→ add((∗→c
←d)y, y)}M

= {0 7→ z} {1 7→ x} .

J{0 7→ add((∗→d
←c)x, x), 1 7→ y} {0 7→ x, 1 7→ add((∗→c

←d)y, y)}K
= (d← ix; y← c)0 ; (c← iy; x← d)1 ; (z← add(y, ix))0 ; (w← add(x, iy))1 ;

(x’← ix)0 ; (y’← iy)1L{0 7→ add((∗→d
←c)x, x), 1 7→ y} {0 7→ x, 1 7→ add((∗→c

←d)y, y)}M
={0 7→ z, 1 7→ y’} {0 7→ x’, 1 7→ w} .

10A step in the type derivation is translated into a pair of equalities with different kinds of paren-

theses.
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J{0 7→ [add((∗→d
←c)x, x), x], 1 7→ [add((∗→c

←d)y, y), y]}K
= (d← ix; y← c)0 ; (c← iy; x← d)1 ; (z← add(y, ix))0 ; (w← add(x, iy))1 ;

(x’← ix)0 ; (y’← iy)1 ; (u← z; u← x’)0 ; (v← w; v← y’)1L{0 7→ [add((∗→d
←c)x, x), x], 1 7→ [add((∗→c

←d)y, y), y]}M
={0 7→ u, 1 7→ v} .

The last two clauses result in a typed protocol that solves the exclusive-or problem

(Example 3.3.1) for the same reason as the typed protocol in Example 3.3.13.

Given that the translation solves a typed input-output problem, we have to make

sure that the original global term solves the same problem. Otherwise, the translation

incorrectly produced a working typed protocol from not-working a global term. We

have to show that the translation is correct in the following sense.

Proposition 3.4.6 For a derivable typed hypersequent O, let LOM = f0 f1 · · · fn

so that each fj is a partial map from processes in P to program variables. Assume that

there is an execution of JOK whose final system snapshot ⟨−→s ,−→v ⟩ satisfies sfj(i) = Vji

for each i ∈ dom(fj). Then, there exists a reduction relation

({},O)⇝∗ (S, {i 7→ V0i}i∈dom(f0) · · · {i 7→ Vni}i∈dom(fn))

for some store S.

Proof By induction on the typing derivation forO. All cases are more or less straight-

forward, of which the most complicated cases are ij-com rule and the EC rule.

ij-com Assume that there is an execution of

JO0 {i 7→M}K; JO1 {j 7→ N}K;
(d← LO0 {i 7→M}M(i); x← c)i;

(c← LO1 {j 7→ N}M(j); y← d)j

whose final system snapshot contains process snapshots sl for each process l ∈ P

that map program variables as:

LO0 {i 7→M}M 7→ (Vkl)0≤k<|O0|LO1 {j 7→ N}M 7→ (Vkl)|O0|≤k<|O0|+|O1| .

Moreover, we assume si(x) = V|O0|+|O1|+1,i and sj(y) = V|O0|+|O1|,j . In order

to use the induction hypotheses, we have to transform our assumptions to the

assumptions needed by the induction hypotheses on the branches of ij-com rule.
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By the form of the programs, there exists an execution of JO0 {i 7→M}K whose

final system snapshot contains a process snapshot s′p for each process p ∈ P that

maps program variables as:

LO0 {i 7→M}M 7→ (Vkp)0≤k<|O0|

and moreover s′i maps LO0 {i 7→M}M to V where V is equal to V|O0|+|O1|+1,i

unless V|O0|+|O1|+1,i is ϵ. Similarly, there exists an execution of JO1 {j 7→ N}K
whose final system snapshot contains a process snapshot s′′p for each p ∈ P that

maps program variables as:

LO1 {j 7→ N}M 7→ (Vkp)|O0|≤k<|O0|+|O1|

and moreover s′′j maps LO1 {j 7→ N}M to W where W is equal to V|O0|+|O1|,j

unless V|O0|+|O1|,j is ϵ.

By the induction hypothesis on O0 {i 7→M}, there exists a reduction relation

({},O0 {i 7→M})

⇝(S′,
0≤k<|O0|

(
M+

k

)
{i 7→ V })

for some store S′ and M+
k (p) = Vkp for each p ∈ P. Also, by the induction

hypothesis on O1 {j 7→ N}, there exists a reduction relation

({},O1 {j 7→ N})

⇝(S′′,
|O0|≤k<|O0|+|O1|

(
M+

k

)
{j 7→W})

for some store S′′ and M+
k (p) = Vkp for each p ∈ P.

When we combine these induction hypotheses, we obtain

({},O0 O1 {i 7→ (∗→d
←c)M} {j 7→ (∗→c

←d)N})

⇝∗(S′ ⊔ S′′, (M+
k )0≤k<|O0|+|O1| {i 7→ (∗→d

←c)V } {j 7→ (∗→c
←d)W})

⇝∗(S, (M+
k )0≤k<|O0|+|O1| {i 7→ V|O0|+|O1|+1,i} {j 7→ V|O0|+|O1|,j}) .

for some S.

EC Assume that there exists an execution of

JO (Mi)i∈I (Ni)i∈IK;(
ki ← LO (Mi) (Ni)M(i); ki ← LO (Mi) (Ni)M(i))

i∈I
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whose final system snapshot is ⟨−→s ,−→v ⟩ where for each process p ∈ P, sp maps

LO ([M ′i , N
′
i ])i∈IM 7→ (Vkp)0≤k<|O|

and moreover si(ki) is V|O|,i for each i ∈ I.

By the form of the programs, there exists an execution of JO (Mi)i∈I (Ni)i∈IK
whose final system snapshot ⟨

−→
s′ ,
−→
v′ ⟩ satisfies

• for any i ∈ I with ⟨Mi, Ni⟩ = ⟨M ′i , N ′i⟩, the process snapshot s′i mapsLO (Mi)i∈I (Ni)i∈IM to Vi and LO (Mi)i∈I (Ni)i∈IM to Wi where

Vi is identical to V|O|,i or ϵ and Wi is identical to V|O|,i;

• for any i ∈ I with ⟨Mi, Ni⟩ = ⟨N ′i ,M ′i⟩, the process snapshot s′i mapsLO (Mi)i∈I (Ni)i∈IM to Vi and LO (Mi)i∈I (Ni)i∈IM to Wi where

Wi is identical to V|O|,i or ϵ and Vi is identical to V|O|,i; and

• for any p ∈ P, s′p maps LO (Mi)i∈I (Ni)i∈IM to (Vkp)0≤p<|O|.

By the induction hypothesis, there exists a reduction relation

({},O (Mi)i∈I (Ni)i∈I)

⇝∗(S,
0≤k<|O|

(Mk
+) (Vi)i∈I (Wi)i∈I)

for some store S, global terms Mk
+ satisfying Mk

+(p) = Vkp for each p ∈ P.

Thus, there is also a reduction relation

({},O ([M ′i , N
′
i ])i∈I)

⇝∗(S,
0≤k<|O|

(Mk
+) (V|O|,i)i∈I) . ■

Proof (of Theorem 3.4.3) Assume that a global term M+ solves a typed input-

output problem R. We claim that the typed protocol JM+K; (oi ← LM+M(i))i∈P solves

R. By Proposition 3.4.6, if there is an execution of JM+K[Ni/ii] that yields the

content of LM+M(i) to be Vi for each i ∈ P, the reduction relation ({},M+[Ni/xi])⇝
(S, {i 7→ Vi}i∈P) holds for some store S. Since the global term M+ solves R, the pair

⟨(Ni)i∈P, (Vi)i∈P⟩ is compatible with R. ■

For the other direction, we can use a universal waitfree problem called the partic-

ipating set problem. Since the class of waitfreely solvable problems is generated by

the participating set problem and problem compositions. We just have to solve the

universal problem using λ-GD.
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Theorem 3.4.7 (Completeness of λ-GD with regard to waitfreedom) If there

exists a typed protocol that solves a typed input-output problem, the problem is solvable

by a typed global term of λ-GD.

Proof Herlihy and Shavit [72] showed that a solution to a finite repetition of the

participating set problem solves any waitfreely solvable problem. Also, n-party par-

ticipating problem can be solved by a tournament of the two-party participating set

problem11. Since λ-GD can express problem composition, it suffices to show a λ-GD

term solving the two-party participating set problem.

In the participating set problem [22], each process i receives an id ci and returns

a set of ids Si. The outputs must satisfy (i) ci ∈ Si; (ii) either Si ⊆ Sj or Sj ⊆ Si;

and (iii) Si ⊆ Sj if ci ∈ Sj for any i, j ∈ P. For two processes, ⟨S0, S1⟩ can be

⟨{c0}, {c0, c1}⟩, ⟨{c0, c1}, {c1}⟩ or ⟨{c0, c1}, {c0, c1}⟩. The point is that the processes

do not know their own ids in advance but receive their own ids as inputs. This is why

just hardcoding processes’ outputs does not work.

We are going to encode the participating set problem in λ-GD. For this, we in-

troduce a base type called Id for process id’s. Let there be an injection that maps a

natural number i to a constant ci : Id. The additional typing rules involving Id are as

follows, where N = (⊥ ⊃ ⊥) ∨ (⊥ ⊃ ⊥):

⊢ cn : [i]Id
Γ ⊢M0 : [i]Id Γ ⊢M1 : [i]Id

Γ ⊢M0 == M1 : [i]N
.

The additional reduction is

cm == cn ⇝

inl (λx.x) (if m = n)

inr (λx.x) (otherwise) .

Also, IfM thenN0 elseN1 is an abbreviation for matchM of inl(x).N0/inr(y).N1.

We represent a finite set of id’s as a typed lambda term, whose type is [i](Id ⊃ B).

Intuitively, a set takes an id and decides whether it is in or out. The emptyset is

represented by a term λx.inr (•). When a finite set S is represented by a term M ,

the set S ∪ {c} is represented by a term λx. (If x == c then inl (•) elseMx). With the

above construction, we define abbreviations like {c0, c1, c2} although we do not equate

{c0, c1, c2} and {c0, c2, c1}.
Now, we are ready to construct a hyperterm solving the two-party participating

11To be exact, the construction for solving the n-party participating set problem using 2-party

participating set problem is the same as a sorting network [16] for sorting n elements.
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set problem. We can obtain a derivation of

x : [0]Id, y : [1]Id ⊢{0 7→ [{(∗→d
←c)x, x}, {x}], 1 7→ [{(∗→c

←d)y, y}, {y}]} :

0 7→ Id ⊃ B, 1 7→ Id ⊃ B .

One possible reduction sequence is as follows:

({}, {0 7→ [{(∗→d
←c)x, x}, {x}], 1 7→ [{(∗→c

←d)y, y}, {y}]})

⇝W({d 7→ x}, {0 7→ [{∗←c, x}, {x}], 1 7→ [{(∗→c
←d)y, y}, {y}]})

⇝R({d 7→ x}, {0 7→ [{abort , x}, {x}], 1 7→ [{(∗→c
←d)y, y}, {y}]})

⇝W({c 7→ y, d 7→ x}, {0 7→ [{abort , x}, {x}], 1 7→ [{∗←d, y}, y], {y}})

⇝R({c 7→ y, d 7→ x}, {0 7→ [{abort , x}, {x}], 1 7→ [{x, y}, {y}]})

⇝A({c 7→ y, d 7→ x}, {0 7→ [abort , {x}], 1 7→ [{x, y}, {y}]})

⇝A({c 7→ y, d 7→ x}, {0 7→ {x}, 1 7→ [{x, y}, {y}]})

⇝A({c 7→ y, d 7→ x}, {0 7→ {x}, 1 7→ {x, y}})

Moreover, the same initial configuration can reduce to

({c 7→ y, d 7→ x}, {0 7→ {y, x}, 1 7→ {y}})

and

({c 7→ y, d 7→ x}, {0 7→ {y, x}, 1 7→ {x, y}}) .

There are no other normal forms. These three normal forms correspond to the three

allowed answers of the two-party participating set problem. ■

3.5 Related Work

Sonobe [129] gives sequent calculi for intermediate logics Si and proved cut-elimination

theorem for them. As a special case he gives Sω, which coincides with Gödel-Dummett

logic. The proof of cut-elimination is similar to that of Gentzen [58], involving the

mix rule. No lambda calculi has been developed based on Sonobe’s deduction system,

probably because the deduction system involves a rule having unlimited number of

assumptions.

Avron [8] formulates a hypersequent calculus for Gödel-Dummett logic and proves

cut-elimination theorem using a method similar to Gentzen [58]. Also, he explains

the intuition behind the communication rule as “the inputs through the ports in Γ′2

are transmitted to the component with output of type A1. The inputs through Γ′1 are
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treated similarly.” He did not mention the possibility of any transmission failures,

which we exploited in order to characterize waitfreedom. Ciabattoni, Galatos and

Terui [30] give a class of logics that have hypersequent calculi with cut-elimination.

Their cut-elimination proof is general but it does not obviously reveal the computa-

tional content.

Baaz, Ciabattoni and Fermüller [11] propose a hypersequent-style natural deduc-

tion for Gödel-Dummett logic, but did not define reductions. Fermüller [48] gives a

game semantics for Gödel-Dummett logic, which is based on Lorenzen game [130] and

essentially proof searching bottom-to-up. Of course, there is a possibility of employ-

ing waitfree communication for proof searching. Indeed, Fermüller’s dialogue game is

sometimes forked and proceeds concurrently. However, he gives no explicit mention

on waitfree computation.

Among numerous typed programming languages with parallelism, to our knowl-

edge, none models waitfreedom. Abramsky [3]’s calculus PE2 for classical linear logic

is deterministic [3, Theorem 7.9] so that it is impossible to model waitfreedom using

PE2. The π-calculus [107], Join calculus [51], and even asynchronous π-calculus [80]

have too strong synchronization abilities to model waitfreedom because a process can

wait for an input.

Hirai [75, 76] compares the temporal order of waitfree computation and the Kripke

models of a modal logic similar to Gödel-Dummett logic. The current work witnesses

the constructive content of his model theoretic comparison.

3.6 Discussion

As a programming language, λ-GD allows efficient execution because it requires no

synchronization among processes. Possibly, this calculus can be extended by synchro-

nization primitives. It would be interesting to compare different synchronization prim-

itives and different intermediate logics, generalizing waitfreedom and Gödel-Dummett

logic. For example, it would be tedious but straightforward to adapt the hyper-lambda

calculi here to the logics characterized by the Kripke frames of bounded width [29]

because λ-GD is a special case of width 1. However, the author has no immediate

idea on developing a general hyper-lambda calculi encompassing all logics with cut-

eliminatable hypersequent calculi [30]. Some high-performance computation people

suggested to study a weaker shared memory consistency than sequential consistency;

that is, to remove the assumption that all read and write operations on shared memory

are lined up in a temporal total order. In their realm, sequential consistency is con-
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sidered too strong to assume everywhere. If we are to study a weaker shared memory

consistency in the same approach as here, we have to study a weaker logic.

It will be worthwhile to develop a waitfree protocol verification mechanism in

Coq because it is valuable to remove unnecessary synchronization while keeping the

program correct in high performance computing.

An anonymous referee of FLOPS 2012 pointed out that the introduction of modal-

ities [i] is interesting on its own. We have not investigated the logical meaning of

these modalities. We suspect these modalities are similar to nominals in the hybrid

logic [21].

In λ-GD, the source of nondeterminism can be explicitly expressed as the store

prophecy. If we can find a semantic counterpart Sch of the store prophecy, possibly,

we can obtain a denotation DSch of terms using a denotation D for normal forms. If

that succeeds for classical logic, it will be interesting12.

Nonetheless there is some more immediate future work. It would be better if we

explicitly implement n-party participating set problem using λ-GD. Another remain-

ing task is to formalize the strong normalization theorem formally in a proof assis-

tant like Coq or Isabelle. Lindley and Stark [95] provided a concise proof of strong

normalization of the natural deduction for intuitionistic propositional logic, contain-

ing disjunction. Lindley’s proof was formalized in Nominal Isabelle by Doczkal and

Schwinghammer [42].

Developing a second order formulation and performing the parametricity argument

is another piece of future work. In Chapter 2, we studied an axiom (φ⊸ ψ)⊗(ψ⊸ φ).

Apart from this, we also tried developing a lambda calculus for (φ⊸ ψ) ⊕ (ψ ⊸ φ)

on top of a second-order formulation of intuitionistic linear logic in Chapter 4. While

doing that, we noticed that adequacy of parametricity argument can be carried out

using induction on just two type derivations; if we did the same for the second-order

variant of λ-GD, it would require induction over many derivations.

Another immediate task is to verify cut-elimination theorem for the new commu-

nication rule presented here. Our com rule does not duplicate any contexts while the

com’ rule by Avron [8] duplicates the contexts Γ and ∆ as

O0 Γ,∆ ⊢M : [i]φ O1 Γ,∆ ⊢ N : [j]ψ

O0 O1 Γ ⊢ (∗→d
←c)M : [i]ψ ∆ ⊢ (∗→c

←d)N : [j]φ
.

Although Avron [8] showed cut-elimination theorem for com’ rule, it is not clear

whether the same theorem holds in our case.

12Kazushige Terui suggested the potential impact for classical logic.
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3.7 Conclusions

We proposed λ-GD, a lambda calculus based on Avron’s hypersequent calculus for

Gödel-Dummett logic [8]. We proved normalization and non-abortfullness. The calcu-

lus characterizes the typed version of waitfree computation. Our result hints broader

correspondence between proof theory and distributed computation.
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Chapter 4

Prelinearity Axiom as an Asynchronous

Communication Scheme

4.1 Summary

Danos and Krivine [38] state that disjunctive tautologies1 such as the excluded mid-

dle φ ∨ (φ ⊃ ⊥) and the symmetric excluded middle (φ ⊃ ψ) ∨ (ψ ⊃ φ) represent

synchronization schemes. Indeed in their formalism, reduction of one term can wait

for another term, thus making synchronization. However, one can find no commu-

nication among different concurrent elements of an executable. In this chapter, we

show that logical axioms can specify how concurrent processes exchange information

asynchronously.

We investigate the computational behavior of the prelinearity axiom (φ ⊸ ψ) ⊕
(ψ ⊸ φ) and left weakening on top of IMALL2, which is the fragment of second

order intuitionistic linear logic with connectives {∀,⊸,⊕}. In other words, our type

system is based on the second-order monoidal t-norm logic (MTL) [46]. We interpret

the disjunction ⊕ in the prelinearity axiom nondeterministically: whether one process

can give information to the other or vice versa. In Section 4.2, where processes do

not make synchronization, nondeterminism appears automatically as a slower process

cannot pass information to a faster one. In Section 4.3, where processes make syn-

chronization, we externally specify the nondeterministic choice. We adapt Danos and

Krivine [38]’s realizability argument to our synchronous case and give simulation from

the synchronous case to the asynchronous case.

The asynchronous semantics here is closely related to the hyper-lambda calculus

for Gödel-Dummett logic presented in Hirai [75]. On top of intuitionistic logic, Gödel-

1A tautology is a theorem of classical propositional logic.
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Dummett logic is axiomatized by Dummett axiom (φ ⊃ ψ)∨ (ψ ⊃ φ), which is similar

to the prelinearity axiom.

Our aim in this chapter is to reason about asynchronous communication on shared

memory using parametricity argument. However, since processes can write into and

read from shared memory, a straightforward approach would lead us to solving mixed-

variant domain equations or using the step-index technique [4]. Although dealing

with general references and parametricity is manageable [20], we choose a simpler, in-

direct approach. In Section 4.2 we deal with the operational semantics involving asyn-

chronous communication using stores. In Section 4.3 we apply the classical realizability

argument to an operational semantics where communication is made synchronously.

In Sections 4.5 and 4.6, we discuss and conclude.

4.2 Asynchronous Semantics

We apply Danos and Krivine’s classical realizability argument [38] to a lambda calculus

involving communicating processes. Although the formulation is similar to [38], our

formulation allows different processes to pass around lambda terms.

In this section, we give an abstract machine involving asynchronous shared memory

communication, which is similar to the hyper-lambda calculus for Gödel-Dummett

logic (Hirai [75]). We consider a programming language, which is a modification of

Danos and Krivine [38]’s.

4.2.1 Dynamics

We assume a set PVar of propositional variables whose cardinality is countably infinite.

We also assume countably infinitely many locations with involution c 7→ c̄ satisfying

c̄ ̸= c and ¯̄c = c. Metavariable c runs over locations. An a-term (asynchronous term) t

is defined by BNF:

t ::=x | (t)t | λx.t | match t of inl(x).t/inr(x).t | inl(t) | inr(t) |

(t ∥ t) | ∗→c
←c | ∗←c | abort

where x is a variable and c is a location. The variable occurrences except in the first

clause are binding. An a-stack (asynchronous stack) π is defined by a BNF:

π ::= ϵ | t · π | ⟨inl(x).(t, π)/inr(x).(t, π)⟩ .

We write the set of a-terms as Λa and a-stacks Πa. A store maps a location to an

a-term, ⊥ or ⊤. The empty store Sϵ maps any location to ⊥. For a store S, we define
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the updated store S[c 7→ x] to be the same as S except that S[c 7→ x](c) is x whatever

S(c) is. An a-executable (asynchronous executable) is a finite multiset on Λa × Πa,

paired with a store.

We define a binary relation ≻a on a-executables to be the smallest binary preorders

that satisfy:

(cong) if [t, π], S ≻a [t′, π′], S′ then [t, π ∥ e], S ≻a [t′, π′ ∥ e], S′ ;

(abort) [abort , π] ≻a ∅ ;

(push) [(t)u, π], S ≻a [t, u · π], S;

(store) [λx.t, u · π], S ≻a [t[u/x], π], S ;

(ask) [match t of inl(x).u/inr(y).v, π], S ≻a [t, ⟨inl(x).(u, π)/inr(y).(v, π)⟩], S ;

(ansL) [inl(v), ⟨inl(x).(t, π)/inr(y).(u, σ)⟩], S ≻a [t[v/x], π], S ;

(ansR) [inr(w), ⟨inl(x).(t, π)/inr(y).(u, σ)⟩], S ≻a [u[w/y], σ], S ;

(write) [∗→c̄
←c, t · π], S[c̄ 7→ ⊥] ≻a [∗←c, π], S[c̄ 7→ t] ;

(write’) [∗→c̄
←c, t · π], S[c̄ 7→ ⊤] ≻a [∗←c, π], S[c̄ 7→ ⊥] ;

(read) [∗←c, π], S[c 7→ u] ≻a [u, π], S[c 7→ u] ;

(fail) [∗←c, π], S[c 7→ ⊥] ≻a ∅, S[c 7→ ⊤] ;

(local-global) if e0, S0 ≻a e1, S1 then e0, S0 ≻a e1, S1 ; and

(dist) [(t ∥ u), π ∥ e], S ≻a [t, π ∥ u, π ∥ e ∥ e], S .

Differently from the synchronous case in Section 4.3, we do not use an external schedule

relation on locations. Instead, nondeterminism appears spontaneously. Indeed, we can

implement something similar to Lafont’s example [61, B.1]. Suppose ⊢ t :φ and ⊢ u :φ

are both derivable. Then, ⊢ (∗→c̄
←c)t ∥ (∗→c

←c̄)u :φ is derivable. From there [((∗→c̄
←c)t ∥

(∗→c
←c̄)u), π], Sϵ can reduce both to [t, π], Sϵ and to [u, π], Sϵ (Figure 4.3).

4.2.2 Statics

For a set S, form(S) is the set of S-formulae φ:

φ ::= s | X | φ⊸ φ | φ⊕ φ | ∀Xφ
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[((∗→c̄
←c)t ∥ (∗→c

←c̄)u), π], Sϵ

≻a[(∗→c̄
←c)t, π ∥ (∗→c

←c̄)u, π], Sϵ

≻a[∗←c, π ∥ (∗→c
←c̄)u, π], Sϵ[d 7→ t]

≻a[(∗→c
←c̄)u, π], Sϵ[c 7→ ⊤, c̄ 7→ t]

≻a[∗←c̄, π], Sϵ[c 7→ ⊥, c̄ 7→ t]

≻a[t, π], Sϵ[c 7→ ⊥, c̄ 7→ ⊥] .

[((∗→c̄
←c)t ∥ (∗→c

←c̄)u), π], Sϵ

≻a[(∗→c̄
←c)t, π ∥ (∗→c

←c̄)u, π], Sϵ

≻a[(∗→c̄
←c)t, π ∥ ∗←c̄, π], Sϵ[c 7→ u]

≻a[(∗→c̄
←c)t, π], Sϵ[c 7→ u, c̄ 7→ ⊤]

≻a[∗←c, π], Sϵ[c 7→ u, c̄ 7→ ⊥]

≻a[u, π], Sϵ[c 7→ ⊥, c̄ 7→ ⊥] .

Figure 4.3: A non-confluent example similar to Lafont’s example [61, B.1]. Both sides

start from the same configuration but reduce to different configurations. Moreover,

since terms t and u can be taken arbitrarily, if we equate the terms related by ≻a, we

have to conclude that arbitrary two terms of the same type are equal.

where s ∈ S and X ∈ PVar. The X in the last clause is binding. The connective ∀
connects stronger than ⊕, which is stronger than ⊸. Repeated ⊸’s, φ0 ⊸ φ1 ⊸
· · · ⊸ φn, are defined inductively on n as φ0 ⊸ (φ1 ⊸ · · · ⊸ φn). A type is an

element of form(∅).
A sequent Γ ⊢ t :φ consists of a context Γ and an s-term t associated with a

type φ. The context is a finite sequence of variables associated with types where the

same variable does not appear more than once. When we write a concatenation of

contexts Γ,∆, we assume no variables appear in both Γ and ∆. A hypersequent is a

finite sequence of sequents. In a hypersequent, we also assume that no variable appears

more than once in the contexts.

An NMTL2 derivation is a tree composed of the derivation rules in Figure 4.4

whose top rules are Ax. A hypersequent is derivable in NMTL2 when there is an

NMTL2 derivation ending at the hypersequent. An s-term t has type φ when ⊢ t :φ is

derivable. A type φ is provable when there is an s-term t with type φ. There is a well-

known substructural logic called the monoidal t-norm logic (MTL), which validates

the prelinearity axiom (φ⊸ ψ)⊕ (ψ⊸ φ). Actually, NMTL2 characterizes MTL.

For example, there is an s-term typed with the prelinearity axiom (Figure 4.5).

Corollary 4.2.1 (Prelinearity as a communication scheme) Assume that an a-

term g has type ∀X∀Y ((X ⊸ Y )⊕ (Y ⊸ X)). Then, the s-executable

[g, ⟨inl(z).(z, x · πY )/inr(w).(w, y · πX)⟩]

reduces to a multiset containing an element of {(x, πX), (y, πY )}.
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H
EW

H Γ ⊢ abort :φ

H Γ ⊢ t :φ ∆ ⊢ u :ψ H′
EE

H ∆ ⊢ u :ψ Γ ⊢ t :φ H′

H ⊢ t :φ ⊢ u :φ
EC

H ⊢ (t ∥ u) :φ

Ax
x :φ ⊢ x :φ

H Γ, x :φ, y :ψ,∆ ⊢ t :θ
IE
H Γ, y :ψ, x :φ,∆ ⊢ t :θ

H Γ ⊢ t :φ
IW

H x :ψ,Γ ⊢ t :φ

H x :φ,Γ ⊢ t :ψ
⊸I

H Γ ⊢ λx.t :φ⊸ ψ

H Γ ⊢ t :φ⊸ ψ H′ ∆ ⊢ u :φ
⊸E

H H′ Γ,∆ ⊢ (t)u :ψ

H Γ ⊢ t :φ
⊕I
H Γ ⊢ inl(t) :φ⊕ ψ

H Γ ⊢ t :ψ
⊕I
H Γ ⊢ inr(t) :φ⊕ ψ

H Γ ⊢ t :φ⊕ ψ H′ ∆, x :φ ⊢ u0 :θ H′ ∆, y :ψ ⊢ u1 :θ
⊕E

H H′ Γ,∆ ⊢ match t of inl(x).u0/inr(y).u1 :θ

H Γ ⊢ t :φ
∀I
H Γ ⊢ t :∀Xφ

(no free X in H or Γ)
H Γ ⊢ t :∀Xφ

∀E
H Γ ⊢ t :φ[ψ/X]

H x :φ⊸ ψ,Γ ⊢ t :θ H′ y :ψ⊸ φ,∆ ⊢ u : τ
Com

H H′ Γ ⊢ t[∗→c̄
←c/x] :θ ∆ ⊢ u[∗→c

←c̄/y] : τ

Figure 4.4: Typing derivation rules of NMTL2. H and H′ stand for hypersequents. In

EW, H cannot be empty.

Ax
x :X ⊸ Y ⊢ x :X ⊸ Y

Ax
y :Y ⊸ X ⊢ y :Y ⊸ X

Com
⊢ ∗→c̄
←c :X ⊸ Y ⊢ ∗→c

←c̄ :Y ⊸ X
⊕I

⊢ inl(∗→c̄
←c) : (X ⊸ Y )⊕ (Y ⊸ X) ⊢ ∗→c

←c̄ :Y ⊸ X
⊕I

⊢ inl(∗→c̄
←c) : (X ⊸ Y )⊕ (Y ⊸ X) ⊢ inr(∗→c

←c̄) : (X ⊸ Y )⊕ (Y ⊸ X)
EC ⊢ (inl(∗→c̄

←c) ∥ inr(∗→c
←c̄)) : (X ⊸ Y )⊕ (Y ⊸ X)

∀I ⊢ (inl(∗→c̄
←c) ∥ inr(∗→c

←c̄)) :∀Y ((X ⊸ Y )⊕ (Y ⊸ X))
∀I ⊢ (inl(∗→c̄

←c) ∥ inr(∗→c
←c̄)) :∀X∀Y ((X ⊸ Y )⊕ (Y ⊸ X))

Figure 4.5: A derivation tree typing an s-term with the prelinearity axiom: the s-term

(inl(∗→c̄
←c) ∥ inr(∗→c

←c̄)) has type ∀X∀Y ((X ⊸ Y )⊕ (Y ⊸ X)).
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Proof By Props. 4.3.5 and 4.3.6 below. ■

4.3 Synchronous Semantics

We consider a programming language, which is a modification of Danos and Kriv-

ine [38]’s. We assume a set PVar of propositional variables whose cardinality is count-

ably infinite. We also assume countably infinitely many locations with involution sat-

isfying c̄ ̸= c and ¯̄c = c. Metavariable c runs over locations. An s-term (synchronous

term) t is defined by a BNF:

t ::=x | (t)t | λx.t | match t of inl(x).t/inr(x).t | inl(t) | inr(t) |

(t ∥ t) | ∗→c
←c | abort

where x is a variable and c is a location. The variable occurrences except in the first

clause are binding. An s-stack (synchronous stack) π is defined by a BNF:

π ::= ϵ | t · π | ⟨inl(x).(t, π)/inr(x).(t, π)⟩ .

We write the set of s-terms as Λs and s-stacks Πs. For s-terms s, t and a variable x,

s[t/x] denotes the result of substitution of t for free occurrences of x in s. When

more than one substitutions are concatenated, e.g. s[t/x][t′/y], the substitutions are

applied at the same time not one after another. When we use this kind of simultaneous

substitution, we always make sure that the same variable x does not appear more than

once after the /’s, e.g. s[t/x][t′/x] never happens.

A process is an element of Λs × Πs. An s-executable (synchronous executable)

is a multiset of processes. We ruthlessly use ∥ both for delimiting elements in an

s-executable and for addition of multisets. We denote the empty multiset by ∅.
A schedule is a total preorder on locations. Given a fixed schedule ⊑, we define

binary relations ≻′s and ≻s on s-executables to be the smallest preorders that satisfy:

(cong) if e0 ≻′s e1 then e0 ∥ e ≻′s e1 ∥ e ;

(abort) [abort , π] ≻′s ∅ ;

(push) [(t)u, π] ≻′s [t, u · π] ;

(store) [λx.t, u · π] ≻′s [t[u/x], π] ;

(ask) [match t of inl(x).u/inr(y).v, π] ≻′s [t, ⟨inl(x).(u, π)/inr(y).(v, π)⟩] ;

(ansL) [inl(v), ⟨inl(x).(t, π)/inr(y).(u, σ)⟩] ≻′s [t[v/x], π] ;
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(ansR) [inr(w), ⟨inl(x).(t, π)/inr(y).(u, σ)⟩] ≻′s [u[w/y], σ] ;

(com0) [∗→c̄
←c, t · π ∥ ∗→c

←c̄, u · σ] ≻′s [u, π] (if c̄ ⊑ c but c ̸⊑ c̄) ;

(com1) [∗→c̄
←c, t · π ∥ ∗→c

←c̄, u · σ] ≻′s [t, σ] (if c ⊑ c̄ but c̄ ̸⊑ c) ;

(com2) [∗→c̄
←c, t · π ∥ ∗→c

←c̄, u · σ] ≻′s [u, π ∥ t, σ] (if c ⊑ c̄ and c̄ ⊑ c) ;

(local-global) If e0 ≻′s e1 then e0 ≻s e1 ; and

(dist) [(t ∥ u), π ∥ e] ≻s [(t, π) ∥ e ∥ (u, π) ∥ e] .

We say e reduces to e′ when e ≻s e
′ holds. Below, we sometimes omit the outermost

parentheses (i.e. [ and ]) for multisets. Rules (cong), (push) and (store) come from

Danos and Krivine [38]. (dist) also appears there but we changed it so that the proof

for adequacy (Theorem 4.3.3) goes through in the case (EC, −).

Definition 4.3.1 A pole |= is a set of s-executables which satisfies

1. e is in |= if e ≻s e
′ and e′ ∈ |= ; and

2. e ∥ f is in |= if e or f is in |= .

In the definition of poles, condition 2. is different from that of Danos and Krivine’s [38].

There, the condition says if e and f are in |= , then e ∥ f is in |= . Our disjunctive

choice here is influenced by hypersequents [8] and hyper-lambda calculi (Chapter 3),

where components are interpreted disjunctively. Computationally, we only guarantee

that at least one process of an s-executable [t0, π0 ∥ · · · ∥ tn, πn] succeeds.

An environment is a pair of an s-stack and an s-executable. The set of environ-

ments is written as E. A program is a pair of an s-term and an s-executable. For a

set Z of environments, Z → |= denotes the set of programs (t, e) such that for any

environment (π, e′) ∈ Z, the s-executable [t, π ∥ e ∥ e′] is in |= . We use programs

and environments because if we continued using s-terms and s-stacks, the proof of

adequacy (Theorem 4.3.3) would fail in the case (⊸E, −), (2).
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For φ ∈ form(2E) and | · |−0 : PVar→ 2E, we define |φ|− ∈ 2E inductively on φ:

|Z|− =Z for Z ∈ 2E

|X|− =|X|−0

|φ⊸ ψ|− ={(t · π, e0 ∥ e1) | (t, e0) ∈ |φ|− → |= and (π, e1) ∈ |ψ|−}

|φ⊕ ψ|− ={(⟨inl(x).(t, π)/inr(y).(u, σ)⟩, f) |

t[v/x], π ∥ f ∥ f ′ ∈ |= for all (v, f ′) ∈ |φ|− → |= and

u[w/y], σ ∥ f ∥ f ′ ∈ |= for all (w, f ′) ∈ |ψ|− → |= }

|∀Xφ|− =
∪
Z∈2Πs

|φ[Z/X]|− .

Using this, we define |φ| = |φ|− → |= . We have an equality |φ⊸ ψ|− = {(t · π, e0 ∥
e1) | (t, e0) ∈ |φ| and (π, e1) ∈ |ψ|−}. Moreover, for types φ and ψ, we define |(φ,ψ)|
as the set of triples (t, u, e) of s-terms t and u and an s-executable e such that [t, π ∥
u, σ ∥ e ∥ e0 ∥ e1] ∈ |= for any (π, e0) ∈ |φ|− and (σ, e1) ∈ |ψ|−.

Proposition 4.3.2 (∗→c̄
←c, ∗→c

←c̄, ∅) ∈ |(φ⊸ ψ,ψ⊸ φ)| for any types φ and ψ.

Proof Take any (t · σ, e0 ∥ e1) ∈ |φ⊸ ψ|− and (u · π, f0 ∥ f1) ∈ |ψ⊸ φ|− such

that (t, e0) ∈ |φ|, (σ, e1) ∈ |ψ|−, (u, f0) ∈ |ψ| and (π, f1) ∈ |φ|− hold. We claim

that e = [∗→c̄
←c, t · σ ∥ ∗→c

←c̄, u · π ∥ e0 ∥ e1 ∥ f0 ∥ f1] is in |= . Depending on the

schedule, e might reduce to [t, π ∥ e0 ∥ e1 ∥ f0 ∥ f1], [u, σ ∥ e0 ∥ e1 ∥ f0 ∥ f1] or

[t, π ∥ u, σ ∥ e0 ∥ e1 ∥ f0 ∥ f1], all of which are in |= by condition 2. of Definition 4.3.1

because [t, π ∥ e0 ∥ f1] and [u, σ ∥ e1 ∥ f0] are in |= . Since |= is closed for ≻−1s , we

have e ∈ |= . ■

For Γ = x1 :φ1, . . . , xn :φn, we denote by |Γ| the set of pairs (
−→
t , e) where

−→
t =

(t1, . . . , tn), e =
f
1≤i≤n ei and each pair (ti, ei) is in |φi|. For that

−→
t , [
−→
t /Γ] denotes

the simultaneous substitution [ti/xi]0≤i≤n. For a hypersequent, we define a set of s-

executables JΓ0 ⊢ t0 :φ0 · · · Γn ⊢ tn :φnK to be the set of executables of the formf
0≤i≤n (ti[

−→gi/Γi], πi ∥ ei ∥ fi) where (−→gi , ei) ∈ |Γi| and (πi, fi) ∈ |φi|−.

Here we state adequacy. What we will use later is statement (1). However, when

we try to prove (1) by induction on derivations, the case for Com rule cannot be

proved due to insufficient induction hypotheses. Thus we deal with two derivations at

the same time.

Theorem 4.3.3 (Adequacy of NMTL2) Let hypersequents H and I be derivable.

We state:
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(1) any s-executable in JHK is also in |= ; and

(2) when H and I are respectively equal to Ĥ x :θ, Γ̂ ⊢ t :φ and Î y : τ, ∆̂ ⊢ u :ψ

up to exchange, the following triple is in |(φ,ψ)|:(
t[v/x][−→g /Γ̂], u[w/y][

−→
d /∆̂], e ∥ f ∥ e′ ∥ eĤ ∥ eÎ

)
given eĤ ∈ JĤK, eÎ ∈ JÎK, (v, w, e′) ∈ |(θ, τ)|, (−→g , e) ∈ |Γ̂| and (

−→
d , f) ∈ |∆̂|.

Proof We prove both statements at the same time by induction on the sum of the

heights of the derivations of H and I. Here we identify hypersequents up to exchange.

(Ax, Ax) When both derivations consist of only axiom rules, the statements follow

from the definitions of |φ| and |(φ,ψ)|.

(IW, −) The derivation for t ends as

H′ Γ′ ⊢ t :φ
W
H′ x̂ : φ̂,Γ′ ⊢ t :φ

.

(1) Take any eH′ ∈ JH′K, (
−→
g′ , e) ∈ |Γ′| and (t̂, ê) ∈ |φ̂|. Since x̂ does not appear

freely in t, the term in question t[t̂/x̂][
−→
g′ /Γ′] is equal to t[

−→
g′ /Γ′]. By the

induction hypothesis (1), (t[
−→
g′ /Γ′], e ∥ eH′) is in |φ|. By condition 2. of

Definition 4.3.1, the program in question (t[t̂/x̂][
−→
g′ /Γ′], e ∥ ê ∥ eH′) is also

in |φ|.

(2) When x and x̂ are different, we can do the same as for (1). Otherwise, x

is equal to x̂ and θ is equal to φ̂. Take any eĤ ∈ JĤK, eÎ ∈ JÎK, (v, w, e′) ∈
|(θ, τ)|, (−→g , e) ∈ |Γ̂|, (

−→
d , f) ∈ |∆̂|, (π, e′′) ∈ |φ|− and (σ, f ′′) ∈ |ψ|−. We

have to show that the following executable is in |= :

ē = t[v/x̂][−→g /Γ̂], π ∥ u[w/y][
−→
d /∆̂], σ ∥ e ∥ f ∥ e′ ∥ e′′ ∥ f ′′ ∥ eĤ ∥ eÎ .

By the induction hypothesis (1), [t[−→g /Γ̂], π ∥ e ∥ e′′ ∥ eĤ] is in |= . More-

over, since x̂ does not appear in t, [t[v/x̂][−→g /Γ̂], π ∥ e ∥ e′′ ∥ eĤ] is in |= .

By condition 2. of Definition 4.3.1, ē is also in |= .

(EW, −) (1) By (abort) reduction.

(2) Also by (abort) reduction, but when x appears in the context for abort , we

have to do the same argument as in (W, −), (2).

(EC, −) The derivation for t ends as

H′ ⊢ t0 :φ ⊢ t1 :φ

H′ ⊢ (t0 ∥ t1) :φ
.
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(1) Take any eH′ ∈ JH′K and (π, f) ∈ |φ|−. We have to show that this exe-

cutable is in |= :

[eH′ ∥ (t0 ∥ t1), π ∥ f ] .

By (dist), this executable reduces to

[eH′ ∥ eH′ ∥ t0, π ∥ t1, π ∥ f ∥ f ] ,

which is in |= because, by the induction hypothesis, the following executable

is in |= :

[eH′ ∥ (t0 ∥ t1), π ∥ f ∥ f ] .

(2) Similar to (1).

(⊸I, −) The derivation for t ends as

H′ x̂ :φ0,Γ ⊢ t1 :φ1

H′ Γ ⊢ λx̂.t1 :φ0⊸ φ1

.

(1) Take any eH′ ∈ JH′K, (−→g , e) ∈ |Γ| and (t0 ·π, e0 ∥ e1) ∈ |φ0⊸ φ1|− so that

(t0, e0) ∈ |φ0| and (π, e1) ∈ |φ1|− hold. We have to show that the following

s-executable is in |= :

(λx̂.t1)[−→g /Γ], t0 · π ∥ e ∥ e0 ∥ e1 ∥ eH′ .

By (store) and (cong), the s-executable reduces to

t1[t0/x̂][−→g /Γ], π ∥ e ∥ e0 ∥ e1 ∥ eH′ .

We have (t0, e0) ∈ |φ0| so, by the induction hypothesis (1), the reduct is in

|= . Since |= is closed for ≻s
−1, the original s-executable is in |= , too.

(2) Take any eĤ ∈ JĤK, eÎ ∈ JÎK, (v, w, e′) ∈ |(θ, τ)|, (−→g , e) ∈ |Γ̂|, (
−→
d , f) ∈ |∆̂|,

(t0 · π, e′0 ∥ e′1) ∈ |φ0⊸ φ1|− and (σ, f ′′) ∈ |ψ|− so that (t0, e
′
0) ∈ |φ0| and

(π, e′1) ∈ |φ1|−. We have to show that this s-executable is in |= :

(λx̂.t1)[v/x][−→g /Γ], t0π ∥ u[w/y][
−→
d /∆], σ ∥ e′ ∥ e ∥ f ∥ e′0 ∥ e′1 ∥ eĤ ∥ eÎ .

By (store) and (cong), the s-executable reduces to

t1[v/x][−→g /Γ][t0/x̂], π ∥ u[w/y][
−→
d /∆], σ ∥ e′ ∥ e ∥ f ∥ e′0 ∥ e′1 ∥ eĤ ∥ eÎ .

Since (t0, e
′
0) is in |φ0|, by the induction hypothesis (2), the reduct is in |= .

Since |= is closed for ≻s
−1, the original s-executable is also in |= .
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(⊸E, −) The derivation for t ends as

H0 Γ0 ⊢ t0 :φ′⊸ φ H1 Γ1 ⊢ t1 :φ′

H0 H1 Γ0,Γ1 ⊢ (t0)t1 :φ
.

(1) Take any eH0 ∈ JH0K, eH1 ∈ JH1K, (−→g0 , e0) ∈ |Γ0|, (−→g1 , e1) ∈ |Γ1| and

(π, e′′) ∈ |φ|−. We have to show that this s-executable is in |= :

((t0)t1)[−→g0/Γ0][−→g1/Γ1], π ∥ e0 ∥ e1 ∥ e′′ ∥ eH0 ∥ eH1.

By (push) and (cong), this s-executable reduces to

t0[−→g0/Γ0], t1[−→g1/Γ1] · π ∥ e0 ∥ e1 ∥ e′′ ∥ eH0 ∥ eH1.

By the induction hypothesis (1) on both branches, we have (t0[−→g0/Γ0], e0 ∥ eH0) ∈
|φ′⊸ φ| and (t1[−→g1/Γ1], e1 ∥ eH1) ∈ |φ′|. By the latter, we have (t1[−→g1/Γ1] ·
π, e1 ∥ e′′) ∈ |φ′⊸ φ|−. By definition of |φ′⊸ φ|, we have shown that the

reduct is in |= . Since |= is closed for ≻−1s , the original s-executable is also

in |= .

(2) Variable x might be contained in Γ0, Γ1, H0 or H1. In the last two cases,

the proof is similar to that of (1).

(case Γ0 = x :θ, Γ̂0) Take any eH0 ∈ JH0K, eH1 ∈ JH1K, (v, w, e′) ∈ |(θ, τ)|,
(−→g0 , e0) ∈ |Γ̂0|, (−→g1 , e1) ∈ |Γ1|, (

−→
d , f) ∈ |∆̂|, (π, e′′) ∈ |φ|− and

(σ, f ′′) ∈ |ψ|−. We have to show that the following s-executable is

in |= :

((t0)t1)[v/x][−→g0/Γ̂0][−→g1/Γ1], π ∥ u′, σ ∥ ê ∥ e1 ∥ e′′ ∥ f ′′ ∥ eH1 .

where u′ = u[w/y][
−→
d /∆̂] and ê = e′ ∥ e0 ∥ eH0 ∥ f . By (push) and

(cong), this s-executable reduces to

t0[v/x][−→g0/Γ̂0], t1[−→g1/Γ1] · π ∥ u′, σ ∥ ê ∥ e1 ∥ e′′ ∥ f ′′ ∥ eH1 .

By the induction hypothesis (1), (t1[−→g1/Γ1], e1 ∥ eH1) is in |φ′|. In

addition to this, (π, e′′) is in |φ|−, making (t1[−→g1/Γ1] · π, e1 ∥ eH1 ∥ e′′)
in |φ′⊸ φ|−. By the induction hypothesis (2), (t0[v/x][−→g0/Γ̂0], u′, ê)

is in |(φ′⊸ φ,ψ)|. These make the reduct a member of |= . Since |=
is closed for ≻s

−1, the original s-executable is also in |= .

(case Γ1 = x :θ, Γ̂1) Take any eH0 ∈ JH0K, eH1 ∈ JH1K, (v, w, e′) ∈ |(θ, τ)|,
(−→g0 , e0) ∈ |Γ0|, (−→g1 , e1) ∈ |Γ̂1|, (

−→
d , f) ∈ |∆̂|, (π, e′′) ∈ |φ|− and
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(σ, f ′′) ∈ |ψ|−. We have to show that the following s-executable is

in |= :

((t0)t1)[v/x][−→g0/Γ0][−→g1/Γ̂1], π ∥ e0 ∥ eH0 ∥ f̂ ∥ e′′

where f̂ = u[w/y][
−→
d /∆̂], σ ∥ f ∥ f ′′ ∥ e1 ∥ eH1 ∥ e′. By (push) and

(cong), this s-executable reduces to

t0[−→g0/Γ0], t1[v/x][−→g1/Γ̂1] · π ∥ e0 ∥ eH0 ∥ f̂ ∥ e′′ .

By the induction hypothesis (2), (t1[v/x][−→g1/Γ̂1], u[w/y][
−→
d /∆̂], e1 ∥ eH1 ∥

f ∥ e′) is in |(φ′, ψ)|. So, since (σ, f ′′) is in |ψ|−, (t1[v/x][−→g1/Γ̂1], f̂) is in

|φ′|. Moreover we have (π, e′′) ∈ |φ|−. Combined, (t1[v/x][−→g1/Γ̂1]·π, f̂ ∥
e′′) is in |φ′⊸ φ|−. By the induction hypothesis (1), (t0[−→g0/Γ0], ê) is

in |φ′⊸ φ|. So, the reduct is in |= , making the original s-executable a

member of |= .

(⊕I, −) Without loss of generality, we assume that the derivation for t ends as

H′ Γ ⊢ t′ :φ0

H′ Γ ⊢ inl(t′) :φ0 ⊕ φ1

.

(1) Take any eH′ ∈ JH′K, (−→g , e) ∈ |Γ| and (⟨inl(x̂).(v, π0)/inr(ŷ).(w, π1)⟩, e′′) in

|φ0 ⊕ φ1|−. By the induction hypothesis (1), (t′[−→g /Γ], e ∥ eH′) is in |φ0|.
By definition of |φ0 ⊕ φ1|−, the s-executable [v[t′[−→g /Γ]/x̂], π0 ∥ e ∥ eH′ ∥
e′′] is in |= . Since |= is closed for ≻s

−1, the s-executable

inl(t′)[−→g /Γ], ⟨inl(x̂).(v, π0)/inr(ŷ).(w, π1)⟩ ∥ e ∥ eH ∥ e′′

is also in |= . This shows the statement because we chose an arbitrary

element of |φ0 ⊕ φ1|−.

(2) If x is in H, the same argument as (1) suffices. Otherwise, take any eH ∈JHK (v, w, e′) ∈ |(θ, τ)|, (−→g , e) ∈ |Γ̂|, (
−→
d , f) ∈ |∆̂|,

(⟨inl(x̂).(v̂, π0)/inr(ŷ).(w, π1)⟩, e′′) ∈ |φ0 ⊕ φ1|−

and (σ, f ′′) ∈ |ψ|−. We have to show that the following s-executable is in

|= :

(inl(t))[v/x][−→g /Γ̂], ⟨inl(x̂).(v̂, π0)/inr(ŷ).(w, π1)⟩ ∥ u′, σ ∥ ê ∥ e′′ ∥ f ′′

where u′ = u[w/y][
−→
d /∆̂] and ê = e′ ∥ e ∥∥ eH ∥ f . By (ansL), the s-

executable reduces to v̂[t′[v/x][−→g /Γ̂]/x̂], π0 ∥ u′, σ ∥ ê ∥ e′′ ∥ f ′′. By the in-

duction hypothesis (2), (t′[v/x][−→g /Γ̂], u′, ê) is in |(φ0, ψ)|. So, (t′[v/x][−→g /Γ̂], [u′, σ ∥
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ê ∥ f ′′]) is in |φ0|. By definition of |φ0 ⊕ φ1|−, the reduct is in |= . Since |=
is closed for ≻s

−1, the original s-executable is also in |= .

(⊕E, −) The derivation for t ends in

H0 Γ0 ⊢ t′ :φ0 ⊕ φ1 H1 Γ1, x̂ :φ0 ⊢ t0 :φ H1 Γ1, ŷ :φ1 ⊢ t1 :φ

H0 H1 Γ0,Γ1 ⊢ match t′ of inl(x̂).t0/inr(ŷ).t1 :φ
.

(1) Take any eH0 ∈ JH0K, eH1 ∈ JH1K, (−→g0 , e0) ∈ |Γ0|, (−→g1 , e1) ∈ |Γ1| and

(π, e′) ∈ |φ|−. We have to show that the s-executable

(match t′ of inl(x̂).t0/inr(ŷ).t1)[−→g0/Γ0][−→g1/Γ1], π ∥ e0 ∥ eH0 ∥ e′ ∥ e1 ∥ eH1

is in |= . By (ask), the s-executable reduces to

t′[−→g0/Γ0], ⟨inl(x̂).(t0[−→g1/Γ1], π)/inr(ŷ).(t1[−→g1/Γ1], π)⟩ ∥ e0 ∥ eH0 ∥ e′ ∥ e1 ∥ eH1 .

We claim that (⟨inl(x̂).(t0[
−−−→
g0/Γ0], π)/inr(ŷ).(t1, π)⟩, e1 ∥ eH1 ∥ e′) is in |φ⊕ ψ|−

and that (t′[−→g0/Γ0], e0 ∥ eH0) is in |φ⊕ ψ|. The first claim is shown by the

induction hypothesis (1) stating that (t0[v/x̂][−→g1/Γ1], e1 ∥ eH1 ∥ e′′) is in |φ|
for any (v, e′′) ∈ |φ0| and similarly to t1. The second claim follows from

induction hypothesis (1) on t′. By the two claims and by the definition of

|φ⊕ ψ|, we have shown that the reduct is in |= and thence that the original

s-executable is in |= .

(2) Variable x might be in Γ0, Γ1, H0 or H1. In the last two cases, the proof is

similar to that of (1).

(case Γ0 = x :θ, Γ̂0) Take any eH0 ∈ JH0K, eH1 ∈ JH1K, (v, w, e′) ∈ |(θ, τ)|,
(−→g0 , e0) ∈ |Γ̂0|, (−→g1 , e1) ∈ |Γ1|, (

−→
d , f) ∈ |∆̂|, (π, e′′) ∈ |φ|− and

(σ, f ′′) ∈ |ψ|−. We have to show that the following s-executable is

in |= :

(match t′ of inl(x̂).t0/inr(ŷ).t1)[v/x][−→g0/Γ̂0][−→g1/Γ1], π ∥

u[w/y][
−→
d /∆̂], σ ∥ e′ ∥ e0 ∥ eH0 ∥ e1 ∥ eH1 ∥ f ∥ e′′ ∥ f ′′.

By (ask) and (cong), this s-executable reduces to

(t′[v/x][−→g0/Γ̂0], ⟨inl(x̂).(t0[−→g1/Γ1], π)/inr(ŷ).(t1[−→g1/Γ1], π)⟩ ∥

u[w/y][
−→
d /∆̂], σ ∥ e′ ∥ e0 ∥ eH0 ∥ e1 ∥ eH1 ∥ f ∥ e′′ ∥ f ′′ .

By the induction hypothesis (2), we have

(t′[v/x][−→g0/Γ̂0], u[w/y][
−→
d /∆̂], e′ ∥ e0 ∥ eH0 ∥ f) ∈ |(φ0 ⊕ φ1, ψ)| .
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Also, we defined (σ, f ′′) to be an element of |ψ|−. By definition of

|(φ0 ⊕ φ1, ψ)|, the reduct is in |= . Since |= is closed for ≻s
−1, the

original s-executable is also in |= .

(case Γ1 = x :θ, Γ̂1) Take any eH0 ∈ JH0K, eH1 ∈ JH1K, (v, w, e′) ∈ |(θ, τ)|,
(−→g0 , e0) ∈ |Γ0|, (−→g1 , e1) ∈ |Γ̂1|, (

−→
d , f) ∈ |∆̂|, (π, e′′) ∈ |φ|− and

(σ, f ′′) ∈ |ψ|−. We have to show that the following s-executable is

in |= :

(match t′ of inl(x̂).t0/inr(ŷ).t1)[−→g0/Γ0][v/x][−→g1/Γ1], π ∥

u[w/y][
−→
d /∆̂], σ ∥ e′ ∥ e0 ∥ eH0 ∥ e1 ∥ eH1 ∥ f ∥ e′′ ∥ f ′′ .

By (ask) and (cong), this s-executable reduces to

er =t′[−→g0/Γ0], ⟨inl(x̂).(t′0, π)/inr(ŷ).(t′1, π)⟩ ∥

u[w/y][
−→
d /∆̂], σ ∥ e′ ∥ e0 ∥ eH0 ∥ e1 ∥ eH1 ∥ f ∥ e′′ ∥ f ′′

where t′0 = t0[v/x][−→g1/Γ1] and t′1 = t′1[v/x][−→g1/Γ1]. By the induction

hypothesis (2), the triple (t′0[v′0/x̂], u[w/y][
−→
d /∆̂], e′ ∥ e1 ∥ eH1 ∥ e′0 ∥ f)

is in |(φ,ψ)| for any (v′0, e
′
0) ∈ |φ0| so that (t′0[v′0/x̂], [u[w/y][

−→
d /D̂], σ ∥

e′ ∥ e1 ∥ eH1 ∥ e′0 ∥ f ∥ f ′′]) is in |φ|. We have a symmetric fact for t1.

Thus, the environment

(⟨inl(x̂).(t′0, π)/inr(ŷ).(t′1, π)⟩,

[u[w/y][
−→
d /∆̂], σ ∥ e′ ∥ e1 ∥ eH1 ∥ f ∥ e′′ ∥ f ′′])

is in |φ0 ⊕ φ1|−. By the induction hypothesis (1), (t′[−→g0/Γ0], e0 ∥ eH0)

is in |φ0 ⊕ φ1|. By definition of |φ0 ⊕ φ1|, the reduct er is in |= . Since

|= is closed for ≻s
−1, the original s-executable is also in |= .

(Com, −) The derivation for t ends in

H0 x̂ :φ0⊸ φ1,Γ0 ⊢ t0 :φ H1 ŷ :φ1⊸ φ0,Γ1 ⊢ t1 :φ′

H0 H1 Γ0 ⊢ t0[∗→c̄
←c/x̂] :φ Γ1 ⊢ t1[∗→c

←c̄/ŷ] :φ′
.

(1) Take any eH0 ∈ JH0K, eH1 ∈ JH1K, (−→g0 , e0) ∈ |Γ0| and (−→g1 , e1) ∈ |Γ1|.
By Proposition 4.3.2, we have (∗→c̄

←c, ∗→c
←c̄, ∅) ∈ |(φ0⊸ φ1, φ1⊸ φ0)|. By

the induction hypothesis (2), the s-terms t′0 = t0[∗→c̄
←c/x̂][−→g0/Γ0] and t′1 =

t1[∗→c
←c̄/ŷ][−→g1/Γ1] satisfy (t′0, t

′
1, e0 ∥ eH0 ∥ e1 ∥ eH1) ∈ |(φ,φ′)|.

(2) If x :θ is in H0 or H1, we can apply the same argument as (1). Otherwise,

without loss of generality, we can assume Γ0 = x :θ, Γ̂0 up to exchange.
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Take any (v, w, e′) ∈ |(θ, τ)|, (−→g0 , e0) ∈ |Γ̂0|, (−→g1 , e1) ∈ |Γ1|, (
−→
d , f) ∈ |∆̂|,

(π, e′′) ∈ |φ|−, (π′, e′′′) ∈ |φ′|− and (σ, f ′′) ∈ |ψ|−. After defining t′0 =

t0[∗→c̄
←c/x̂][−→g0/Γ̂0][v/x], t′1 = t1[∗→c

←c̄/ŷ][−→g1/Γ1] and u′ = u[w/y][
−→
d /∆̂], we

have to show that this s-executable is in |= :

t′0, π ∥ t′1, π′ ∥ u′, σ ∥ e′ ∥ e0 ∥ eH0 ∥ e1 ∥ eH1 ∥ f ∥ e′′ ∥ e′′′ ∥ f ′′ .

Consider the derivation consisting of an axiom x̂ :φ0⊸ φ1 ⊢ x̂ :φ0⊸ φ1.

This derivation is shorter than the derivation for H. We can use the in-

duction hypothesis (2) on this derivation and the derivation of u. By this

and Proposition 4.3.2, (∗→c̄
←c, t

′
1, e1 ∥ eH1) is in |(φ0⊸ φ1, φ)|. So, program

p = (∗→c̄
←c, [t

′
1, π
′ ∥ e1 ∥ eH1 ∥ e′′′]) is in |φ0⊸ φ1|. By the induction hypoth-

esis (2) for the derivations for t0 and u, especially using the program p for

substituting x̂, we can show that (t′0, u
′, (t′1, π

′ ∥ e1 ∥ eH1 ∥ e′′′ ∥ e0 ∥ eH0 ∥
e′ ∥ f)) is in |(φ,ψ)|. Thus, the reduct is in |= . Since |= is closed for ≻s

−1,

the original s-executable is also in |= .

(∀I, −) The derivation for t ends in
H′ Γ ⊢ t :φ
H′ Γ ⊢ t :∀Xφ

.

(1) Take any eH′ ∈ JH′K and (−→g , e) ∈ |Γ|. Since Γ does not contain X freely,

|Γ| does not change whatever |X|−0 is. By induction hypothesis (1) for

arbitrary |X|−0 , the program (t[−→g /Γ], e ∥ eH′) is in
∩
Z∈2Πs

|φ[Z/X]|, which

is a subset of
(∪
Z∈2Πs

|φ[Z/X]|−
)
→ |= .

(2) We can replace X in the derivation of t with a propositional variable X ′

that does not occur in the derivation of u. We are going to use the induc-

tion hypothesis on the renamed derivation with the s-terms and s-stacks

taken above. Since θ and Γ̂ do not contain X freely, we have (v, w, e′) ∈
|θ[X ′/X], τ |, (−→g , e ∥ eH) ∈ |Γ̂[X ′/X]| and (π, e′′) ∈ |∀X ′φ[X ′/X]|−. By

the induction hypothesis (2) on the renamed derivation, the s-terms t′ =

t[v/x][−→g /Γ] and u′ = u[w/y][
−→
d /∆] satisfy (t′, u′, e ∥ f ∥ eH) ∈ |φ[X ′/X], ψ′|

for any |X ′|−0 . That is, for Z ∈ 2E that makes (π, e′′) ∈ |φ[X ′/X][Z/X ′]|−

and (σ, f ′′) ∈ |ψ[Z/X ′]|−, t′π ∥ u′, σ ∥ e′′ ∥ f ′′ is in |= , making t′, π ∥ u′, σ
an element of |= ..

(∀E, −) Both statements follow from the induction hypotheses because |φ[ψ/X]|− is

a subset of |∀Xφ|−.

(Other cases) We can swap t and u and find a symmetric case above. ■
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Note that (1) uses (2) in (Com, −) and (2) uses (1) in (⊸E, −) and (IW, −) in the

proof of Theorem 4.3.3.

Proposition 4.3.4 Given a set P of processes, the following set is a pole: the set of

s-executables that reduces to an s-executable containing an element of P .

Proposition 4.3.5 (Prelinearity as a communication scheme) Assume that an

s-term g has type ∀X∀Y ((X ⊸ Y )⊕ (Y ⊸ X)). Then, the s-executable

[g, ⟨inl(z).(z, x · πY )/inr(w).(w, y · πX)⟩]

reduces to a multiset containing an element of {(x, πX), (y, πY )}.

Proof We denote by |= the set of s-executables that reduce to a multiset containing

an element of {(x, πX), (y, πY )}. By Proposition 4.3.4, |= is a pole. Take |X|−0 =

{(πX , ∅)} and |Y |−0 = {(πY , ∅)}. We have x ∈ |X| and y ∈ |Y |. By definition of

|·|−, ⟨inl(z).(z, x · πY )/inr(w).(w, y · πX)⟩ is in |(X ⊸ Y )⊕ (Y ⊸ X)|−. By adequacy

(Theorem 4.3.3), [g, ⟨inl(z).(z, x · πY )/inr(w).(w, y · πX)⟩] is in |= . ■

Proposition 4.3.6 Let e be an s-executable. If e ≻s e
′ then e, Sϵ ≻a e

′, Sϵ.

Proof Most reduction rules are common. Rules (com0) and (com1) are simulated in

Figure 4.3. Rule (com2) can be simulated similarly. ■

This transfers the semantics of prelinearity (Proposition 4.3.5) to the asynchronous

case.

Example 4.3.7 (A term performing information exchange.) Since g = (inl(∗→c̄
←c) ∥

inr(∗→c
←c̄)) has the type ∀X∀Y ((X ⊸ Y )⊕ (Y ⊸ X)) (Figure 4.5), g satisfies the con-

dition of Proposition 4.3.5. Indeed, by (dist), [g, ⟨inl(z).(z, x · πY )/inr(w).(w, y · πX)⟩]
reduces to

[ (
inl(∗→c̄

←c), ⟨inl(z).(z, x · πY )/inr(w).(w, y · πX)⟩
)

∥ (inr(∗→c
←c̄), ⟨inl(z).(z, x · πY )/inr(w).(w, y · πX)⟩)

]
.

By (ansL), (ansR) and (cong), the s-term above reduces to [∗→c̄
←c, x · πY ∥ ∗→c

←c̄, y · πX ].

Depending on the schedule, the s-term above reduces to either [x, πX ] or [y, πY ] or

[x, πX ∥ y, πY ].
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4.4 Characterization of Monoidal t-Norm Logic

There is a well-known substructural logic called monoidal t-norm logic (MTL), which

validates the prelinearity axiom (φ⊸ ψ)⊕ (ψ⊸ φ). Actually, NMTL2 characterizes

MTL (Propositions. 4.4.2 and 4.4.3).

The MTL formulae can be defined as2:

φ ::= 0 | X | φ⊸ ψ | φ⊗ ψ | φ⊕ ψ .

As an abbreviation, we can introduce φ ∧ ψ = (φ⊗ (φ⊸ ψ))⊕ (ψ ⊗ (ψ⊸ φ))3. We

take a hypersequent formulation of MTL by Baaz et al. [13], whose rules we show in

Figure 4.6.

(ax)
X ⊢ X (ax)

0 ⊢ φ
H ∆0,Γ0 ⊢ φ H ∆1,Γ1 ⊢ ψ

(com)
H ∆0,∆1 ⊢ φ Γ0,Γ1 ⊢ ψ

H Γ ⊢ φ H φ,∆ ⊢ ψ
(cut)

H Γ,∆ ⊢ ψ
H Γ ⊢ φ

(w,l)
H Γ, ψ ⊢ φ

H Γ ⊢ 0
(w,r)

H Γ ⊢ φ
H(EW)

H Γ ⊢ φ

H Γ, φ, ψ ⊢ χ
(⊗, l)

H Γ, φ⊗ ψ ⊢ χ
H Γ ⊢ φ H ∆ ⊢ ψ

(⊗, r)
H Γ,∆ ⊢ φ⊗ ψ

H Γ ⊢ φ H ∆, ψ ⊢ χ
(⊸,l)

H Γ,∆, φ⊸ ψ ⊢ χ
H Γ, φ ⊢ ψ

(⊸, r)
H Γ ⊢ φ⊸ ψ

H Γ, φ ⊢ χ H Γ, ψ ⊢ χ
(⊕, l)

H Γ, φ⊕ ψ ⊢ χ
H Γ ⊢ φi

(⊕, r)
H Γ ⊢ φ0 ⊕ φ1

Figure 4.6: The propositional rules in HL∀BCK [13], which characterizes monoidal t-

norm logic. Axioms are not shown in Baaz et al. [13] so we took them from Ono and

Komori [116]. Exchange rules are implicit: the contexts and hypersequents are treated

as finite sets rather than sequences. If a formula is provable with the (cut) rule, the

formula is also provable without the (cut) rule by Baaz et al. [13, Theorem 3.2].

2From the literature [34], the connectives are translated as & into ⊗ and → into ⊸.
3The translation of ∧ is a tailor-made one for MTL, which is taken from [34, p. 48]. The origin of

the translation can be traced back to Cintula et al. [33, Lemma 6.5].
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We translate MTL formulae to MTL2 formulae by induction on φ:

0• = ∀XX

X• = X

(φ⊸ ψ)• = φ•⊸ ψ•

(φ⊗ ψ)• = ∀X((φ•⊸ ψ•⊸ X)⊸ X) where X does not appear in φ⊗ ψ

(φ⊕ ψ)• = φ• ⊕ ψ• .

We state that any MTL formula φ is a theorem in HL∀BCK iff φ• is a theorem in

NMTL2. In order to reason inductively on hypersequent derivations, we extend the

translation (·)• to sequents and hypersequents. We define (Γ ⊢ φ)• to be Γ• ⊸
φ• where Γ• is the ⊗-conjunction of translations of the elements of Γ. We define(
Γ0 ⊢ φ0 · · · Γn ⊢ φn

)•
to be (Γ0 ⊢ φ0)• · · · (Γn ⊢ φn)•. A substitution

instance of an MTL2 formula φ is an MTL formula obtained by substituting an MTL

formula for each bound propositional variable in φ.

Proposition 4.4.1 If a hypersequent is derivable in NMTL2, all substitution instances

of the hypersequent are derivable in HL∀BCK.

Proof By induction on NMTL2 derivations. ■

Proposition 4.4.2 (Soundness) When the translation φ• is provable in NMTL2,

the original φ is provable in HL∀BCK.

Proof We define an MTL formula φ◦ inductively on an MTL formula φ so that φ◦

is a substitution instance of φ• and φ◦⊸ φ is provable in HL∀BCK. The definition of

φ◦ follows:

0◦ = 0

X◦ = X

(φ⊸ ψ)◦ = φ◦⊸ ψ◦

(φ⊗ ψ)◦ = (φ◦⊸ ψ◦⊸ (φ◦ ⊗ ψ◦))⊸ (φ◦ ⊗ ψ◦)

(φ⊕ ψ)◦ = φ◦ ⊕ ψ◦ .

Both claims are immediate. Assume φ• is provable in NMTL2. By the first claim and

Proposition 4.4.1, φ◦ is provable in HL∀BCK. By the second claim, φ is provable in

HL∀BCK. ■
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Proposition 4.4.3 (Completeness) If a hypersequent H is derivable in HL∀BCK

without using (cut), then the translation H• is derivable in NMTL2.

Proof By induction on derivations of the cut-free fragment of HL∀BCK. All cases

are straightforward. For branching rules, we have to apply (EC) because in HL∀BCK,

the components in a hypersequent are distributed additively while in NMTL2 multi-

plicatively. And above and below (EC), we have to use (⊸I) and (⊸E) so that the

restricted form of (EC) rule in NMTL2 is applicable. ■

4.5 Discussion and Future Work

This work is technically similar to Danos and Krivine’s [38]. One large difference

is the existence of (comi), (read) and (write) reductions, where terms are passed

from processes to other processes. In [38], the only reduction rule involving multiple

processes is (dist), which spawns processes that never communicate. Sharing their

purpose “interpretation of logical rules as programming instructions” [38], we continue

to seek generalization to other substructural logics.

The asynchronous semantics given here is similar to that of a hyper-lambda calculus

λ-GD by Hirai [77]. We conjecture that our classical realizability argument here is

applicable to λ-GD as well, but for that, due to contraction rule, we have to generalize

the statement of adequacy to involve arbitrarily many derivations.

There are recent developments [26, 146] over Curry-Howard correspondence be-

tween the linear logic and process calculi. Since their type systems do not incorporate

the prelinearity axiom (without modalities ! or ?), we conjecture that we can extend

their type systems and their process calculi with the prelinearity axiom representing

the same kind of communication schemes as we have shown4.

Hájek’s basic fuzzy logic (BL) is very similar to MTL [28]. Actually from MTL,

BL can be obtained by adding (φ ⊗ (φ ⊸ ψ)) ⊸ (ψ ⊗ (ψ ⊸ φ)) (or a symmetric

axiom). Thus, we have to find the computational meaning of the additional axiom in

order to find a lambda calculus for BL.

4.6 Conclusion

We developed a lambda calculus for MTL2 and analyzed the prelinearity axiom us-

ing the classical realizability. The terms typed with prelinearity are asynchronous

communication schemes.

4Although it is not clear how to implement shared memory in the target process calculi.
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Chapter 5

Hypersequents in the Programming

Language Haskell

5.1 Summary

We investigate the computational meaning of hypersequents and realize it as a Haskell

library. The hypersequent calculus is introduced by mathematical logicians [8, 30, 102]

in order to obtain cut-free deduction systems for more logics. In the previous chap-

ters, we proposed using hypersequents for representing asynchronous or synchronous

communication. In this chapter, we try implementing hypersequents within a program-

ming language Haskell [98]. Logically, a hypersequent means every model satisfies at

least one component. Computationally, a hypersequent means every execution makes

at least one component successful. We use this analogy for waitfreely communicating

threads. This is useful because typical waitfree protocols use the fact that at least

one thread can successfully read other thread’s information. Throughout this chapter,

Haskell syntax is assumed1. Another purpose of this chapter is confirmation of the

proof of Theorem 3.4.3 and Theorem 3.4.7 by implementing it.

5.2 Introduction

5.2.1 Waitfreedom

Waitfreedom is a notion born in the theory of asynchronous communication [72, 93,

125]. Since waitfreedom provides no synchronization among processes, it has served

as a basis for comparing different synchronization primitives. The intuition of wait-

freedom is simple: a thread cannot wait for another thread. Suppose there are a finite

1Under Haskell platform, cabal install waitfree will install this library.
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number of threads and they can communicate using a store. They can visit the store,

put and take things on the store and then leave the store. The problem is that the

thread’s movements can be arbitrarily slow: they can delay for unspecified amount of

time and the threads have no control over the delay. Waitfreedom prohibits a thread

from waiting for another; that is, a thread cannot choose to stay at the store until an-

other thread comes to the store; nor can a thread keep visiting the store until another

thread comes to the store2. The latter restriction can be formalized as existence of a

constant natural number k so that no thread visits the store more than k-times in any

execution. So, when a thread consumes all permitted visits to the store, the thread

has to give up receiving anything yet to come from other threads. We can enforce

this restriction by prohibiting looping so that each thread can make steps at most the

number of lines in its program.

This notion of waitfreedom is originally imperative: involving reads from and writes

to the memory and the ordering of events. In other words, this description is about

how waitfree computation works but it is hard to deduce from this notion what wait-

free computation computes. The merit of using a functional programming language,

especially a pure one like Haskell, is emphasized if the program describes what rather

than how it computes.

Concrete examples give a useful intuition for modeling what waitfree protocols can

compute. Suppose a thread has a value v and another has w. It is waitfreely impossible

for the two threads to exchange their possessions. Instead, there is a waitfree protocol

for them to ensure that either w is passed to the second thread or v is passed to the

first thread. In other words, only one-way communication is guaranteed. We are going

to exploit this property when formulating waitfree computation with hypersequents.

5.2.2 Implementing Hyper-Lambda Calculus

In waitfree protocol, two threads can communicate in one-way fashion, and it is decided

at execution time which one can send information to the other. This phenomenon can

be understood as a set of computations of which at least one is guaranteed to be

successful. Such a set of computations can be represented as a hypersequent. K s a

represents thread s’s computation yielding a value of type a and K t b represents

thread t’s computation yielding a value of type b. The waitfree protocol described at

the end of Subsection 5.2.1 witnesses the following derivation because either t obtains

b or s obtains a after executing the protocol.

2Thus a thread cannot busy-wait for the shared memory to be filled.
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K t a K s b

K t b K s a

However, this derivation only contains types but not programs. In this chapter, we

are going to propose how to write a program belonging to this type in Haskell.

From this perspective, the merit of this chapter exists in showing the hyper-lambda

calculi are implementable. Hypersequents are roughly sequences of typed terms. At

first, they were introduced as an apparatus for obtaining cut-elimination theorems for

more logics. However, as we have seen in Chapters 2, 3 and 4, we can obtain program-

ming languages out of hypersequent calculi. Thus it is natural to try implementing

the programming languages.

5.3 An Example Program

We show an example program written using our library (Figure 5.1). This is a

concrete realization of the simplest nontrivial waitfree computation described at the

end of Subsection 5.2.1.

The external behavior of the example program. This program can be compiled

and executed as:

% ghc --make -threaded waitfree_test.hs

[1 of 1] Compiling Main

Linking waitfree_test ...

% ./waitfree_test

Then, it spawns two threads listening on port 6000 and 6001. If we connect to the first

thread on port 6000 and give input apple, the first thread tries to obtain the input

given to the other thread but since the first thread cannot wait for the second, fails to

do so and aborts. Below, we omit the outputs of telnet for clarity.

% telnet localhost 6000

0 requiring input: apple

Thread 0 failed to read peer’s input.

When we connect to the second thread on port 6001 and give another input orange,

the second thread obtains the input apple given to the first thread and displays both

inputs.

% telnet localhost 6001
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1 requiring input: orange

Thread 1 got: ("orange\r","apple\r")

The internal behavior of the example program. Each of threads 0 and 1 writes

its input into the shared memory and then tries to read the other thread’s input from

the shared memory. When a thread tries to read what the other thread has not

written, the reader aborts. The reading thread cannot wait for the other thread’s

write operation.

We assume sequential consistency. Sequential consistency is an illusion sustained

by shared memory mechanism that pretends to align all memory operations in a totally

ordered sequence. In this case, there are six possible such ordered sequences.

• 0 writes, 0 reads, 1 writes and 1 reads. Then, 1 reads 0’s write.

• 0 writes, 1 writes, 0 reads and 1 reads. Both read each other’s write.

• 0 writes, 1 writes, 1 reads and 0 reads. Both read each other’s write.

• 1 writes, 0 writes, 0 reads and 1 reads. Both read each other’s write.

• 1 writes, 0 writes, 1 reads and 0 reads. Both read each other’s write.

• 1 writes, 1 reads, 0 writes and 0 reads. Then, 0 reads 1’s write.

In any of these six cases, either thread 0 obtains thread 1’s input or 1 obtains 0’s

input.

The source code of the example program. We look at the source code of this

sample program in Figure 5.1.

For implementing the above-described external behavior, an obvious thing to do is

to establish a TCP connection. This is done by a function called handle. The input

of handle is a PortID, which is the port number. The output of handle is a Handle,

which is a TCP connection.

handle :: PortID -> IO Handle

handle p = withSocketsDo $ do

s <- listenOn p

(h,_,_) <- accept s

hSetBuffering h NoBuffering

return h
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Since this connection establishment should be done by a thread, we prepare a hyperse-

quent containing this computation. For that, we can use our library function single

that creates a hypersequent containing a single component.

prepareHandle :: Thread t =>

PortID -> IO (K t Handle :*: HNil)

prepareHandle p = single $ handle p

Next the program asks the user to provide an input. In doing that, showing the

name of the current thread is useful. When a type t is of the type class Thread, we

can obtain the thread’s number via atid function (atid stands for Abstract Thread

ID).

readLine :: Thread t =>

t -> Handle -> IO ((Handle, String), String)

readLine th h = do

hPutStr h $ (show $ atid th) ++ " requiring input: "

str <- hGetLine h

return ((h, str), str)

The result of this interaction is stored in a tuple ((h, str), str), whose left part

contains things to be used locally, and whose right part contains things to be used

remotely in the other thread. The handle h is kept locally at the thread while the

obtained input str is duplicated.

This distinction of local and remote usage is apparent in the type of comm function,

which provides the simplest waitfree communication.

comm :: (Thread s, Thread t, HAppend l l’ l’’) =>

IO (K t (b,a) :*: l)

-> IO (K s (d,c) :*: l’)

-> IO (K t (b,c) :*: K s (d,a) :*: l’’)

The comm function assumes that the types s and t are Threads and that a hypersequent

l’’ is the concatenation of l and l’. Under these assumptions, the function takes

two hypersequents in IO monad and returns a hypersequent in IO monad. The first

argument says either t’s computation of a value of type (b,a) or one of the components

of the hypersequent l succeeds. The second argument says the same thing for s’s

(d,c) and l’. If any component in l or l’ is successful, that component witnesses

the resulting hypersequent. Otherwise, when thread t computes (b,a) value and s

computes (d,c) value successfully, the comm function guarantees either t obtains the
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c value or s obtains the a value. The b value and the d value are only used locally.

Without this distinction of local and remote usage, the TCP connections would be

communicated together with the inputs so that the connections are not closed until

all threads terminates.

When we draw the type of comm in the hypersequent style,

IO (K t (b,a) :*: l) IO (K s (d,c) :*: l’)

IO (K t (b,c) :*: K s (d,a) :*: l’’)

we see some similarities and differences from the hyper-lambda calculus in Chapter 3.

When we ignore b and d, then the rule is the same as ij-com rule in Figure 3.2 except

that the type of comm does not have contexts.

The final agenda is to output the obtained inputs. This is done by the printTaken

function. Similarly to readLine function, the printTaken function takes the thread

and the result of the last computation.

Everything is wrapped up into a hypersequent content of the type

IO (K ZeroT () :*: K (SucT ZeroT) () :*: HNil)

and it is executed. Here, ZeroT means thread 0 and SucT ZeroT means thread 1.

The content of execute function is explained in the next section.

5.4 Implementation of the Library

5.4.1 What is a Hypersequent

We implemented hypersequents as heterogeneous collections by Kiselyov et al. [88] with

a slight modification. We required each element of such a heterogeneous collection to

be a thread’s computation. We expressed threads as type level natural numbers, which

is obtained by simplifying heterogeneous lists. Each thread is expressed as a singleton

type containing a single value. When that value is passed to the atid function, the

function returns an AbstractThreadId, which is tentatively defined to be Int.

A type t can be of type class Thread only if there is a constant called t of type t.

class Thread t where

t :: t

atid :: t -> AbstractThreadId

We declare a type called ZeroT, which have a single value called ZeroT (it is a custom

of the Haskell community to use the same name for a type and its unique constructor).

The type ZeroT is of type class Thread after defining constant t to be the single value

ZeroT. The type ZeroT is going to be used as the label for thread 0.
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data ZeroT = ZeroT

instance Thread ZeroT where

t = ZeroT

atid ZeroT = 0

We are going to allow users to use as many threads as they want. After ZeroT, we

inductively define infinitely many types of type class Thread. For type t, we define a

type SucT t. A value of SucT t is of the form SucT t where t is a value of type t.

Especially, when type t is of type class Thread, the new type SucT t is also of type

class Thread. The type class Thread requires a constant t of SucT t, which we define

to be SucT t where value t of type t is the constant provided by our assumption that

type t is of type class Thread.

data SucT t = SucT t

instance Thread t => Thread (SucT t) where

t = SucT t

atid (SucT x) = succ $ atid x

type AbstractThreadId = Int

Using these, we have many types of type class Thread: ZeroT, SucT ZeroT and so on.

This technique is called type level natural numbers.

Thread t’s computation of type a is represented as K t a. Internally, it is a

pair of thread and a computation of JobStatus a. A JobStatus can be Having a,

Done TryAnotherJob or Done Finished. Having a shows the thread’s computation

is not yet finished and as the intermediate result the thread have a value of type a.

Done TryAnotherJob shows that the thread has stopped after failing to read shared

memory content. Done Finished shows that the thread has stopped.

newtype K t a = K (t, IO (JobStatus a))

data JobStatus a = Having a | Done ThreadStatus

data ThreadStatus = TryAnotherJob | Finished

A hypersequent is either HNil or HCons (K t e) l where l is a hypersequent.

This inductive definition realizes the idea of a heterogeneous list of threads’ computa-

tions. This construction is an adaptation of [88]. First we declare a type class called

HyperSequent.

class HyperSequent l
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Second, we define the empty hypersequent called HNil of type HNil of type class

HyperSequent.

data HNil = HNil

instance HyperSequent HNil

Third, we define the cons operation of hypersequent. HCons e l is of type HCons e l

when e is of type e and l is of type l. Especially, when type l is of type class

HyperSequent, the type HCons (K\,t\,e) l is also of type class HyperSequent what-

ever the type e is.

data HCons e l = HCons e l

instance HyperSequent l =>

HyperSequent (HCons (K t e) l)

Finally, we define an abbreviation for type HCons e l.

infixr 5 :*:

type e :*: l = HCons e l

In our framework, every hypersequent is going to be contained in IO monad so that

hypersequent derivations can contain MVar cells. The MVar cells are used for imple-

menting the communication rule. Although we use MVar cells, which are capable of

supporting full synchronization among threads, we only use a limited set of functions

that only allows waitfree communication. For instance, we do not use takeMVar or

putMVar because they are blocking operations.

5.4.2 How to Execute a Hypersequent

Of course we can execute a hypersequent after we construct it. The execution takes

three steps: preparing computations, spawning threads and waiting for them.

After a hypersequent derivation is constructed, it is turned into a list of local

computations. A value of type L is internally used to represent a piece of local com-

putation. Each piece of computation results in either TryAnotherJob or Finished.

These decide whether the thread continues to operate or stops.

type L = (AbstractThreadId, IO ThreadStatus)

Local computations are then transformed into a finite map from thread identifiers

to channels containing computations. Each thread reads the list for its own identifier

and executes the computations in the list one by one. A type l can be of type class

Lconvertible only if a value of type l can be converted into a list of L values.
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class Lconvertible l where

htol :: l -> [L]

Any value of type HNil is converted into an empty list of L values.

instance Lconvertible HNil where

htol _ = []

A longer hypersequent is also convertible into a list of L values.

instance (Thread t, Lconvertible l) =>

Lconvertible (HCons (K t ThreadStatus) l) where

htol (HCons (K (th, result)) rest) =

(atid th, fmap jth2th result) : htol rest

jth2th :: JobStatus ThreadStatus -> ThreadStatus

jth2th (Having x) = x

jth2th (Done x) = x

Since a list of type [L] contains pieces of computation for possibly multiple threads,

the next thing is demultiplexing the list into many lists each of which serves jobs to

one thread. We construct a list of computations for each thread. The lists have type

JobChannel. The JobChannels are put in a finite map called JobPool. The JobPool

maps each AbstractThreadId to a JobChannel. Later, the worker threads look at

this map to take jobs.

type JobChannel = [IO ThreadStatus]

type JobPool =

Map.Map AbstractThreadId JobChannel

The actual conversion is done by constructJobPool, which acts inductively on a list

of type [L].

constructJobPool :: [L] -> JobPool

constructJobPool [] = Map.empty

constructJobPool ((aid, action) : tl) =

Map.insertWith (++) aid [action] rest

where rest = constructJobPool tl

At last, threads are spawned. Each thread’s operation is defined in worker function.

It takes two arguments. The first argument is a channel containing jobs. The other
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argument is an MVar cell for telling termination to the main thread. Although the

worker threads do not wait for any other worker thread, the main thread waits for the

worker threads. The worker tries consuming jobs in the provided JobChannel one by

one until one succeeds or all fails. After the worker consumes all jobs in the provided

JobChannel, the worker puts () into the provided MVar cell so that the main thread

can notice that the worker is idling.

worker :: JobChannel -> MVar () -> IO ()

worker [] fin = tryPutMVar fin () >>= \_ -> return ()

worker (hd : tl) fin = do

result <- hd

case result of

TryAnotherJob -> worker tl fin

Finished -> tryPutMVar fin () >>= \_ -> return ()

When the main thread spawns the worker threads, it has their ThreadIds and

the termination MVar cells in a finite map. After spawning the worker threads, the

main thread waits for each worker thread to fill the MVar and then kills the worker

thread. A value of type ThreadPool maps a value of AbstractThreadId into a value

of ThreadId and an MVar. A value of type ThreadId is provided by the Haskell

Concurrent library and a value of ThreadId can be used to kill a thread. The MVar is

filled when the worker thread finishes the computation and then the main thread can

see the worker thread has finished.

type ThreadPool = Map.Map AbstractThreadId (ThreadId, MVar ())

The main thread uses threadSpawn to register a new thread in the thread pool using

an AbstractThreadId and a JobChannel.

threadSpawn :: AbstractThreadId -> JobChannel -> IO ThreadPool -> IO ThreadPool

threadSpawn aid ch p = do

p’ <- p

fin <- newEmptyMVar

thid <- forkIO $ worker ch fin

return $ Map.insert aid (thid, fin) p’

Then, the main thread waits for all worker threads and kills them.

waitThread :: ThreadPool -> IO ()

waitThread = Map.fold threadWait $ return ()
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threadWait :: (ThreadId, MVar ()) -> IO () -> IO ()

threadWait (thid, fin) w = do

readMVar fin

killThread thid

w

At last, everything is wrapped up into a function called execute.

execute :: Lconvertible l => IO l -> IO ()

execute ls = do

ls >>= run . constructJobPool . htol >>= waitThread

run :: JobPool -> IO ThreadPool

run = Map.foldrWithKey threadSpawn $ return Map.empty

Since all hypersequents are of types belonging to type class Lconvertible, they can

be executed.

5.4.3 How to Construct a Hypersequent

Since a hypersequent represents a finite multiset of computations of which at least one

succeeds, there cannot be an empty hypersequent. Thus, the simplest hypersequent

is a hypersequent consisting of a single component. This can be built with single

function. The ingredient computation is not of type IO a but of type t -> IO a so

that the computation can display the thread t’s AbstractThreadId.

single :: Thread t => (t -> IO a) -> IO (K t a :*: HNil)

single f = return $ HCons (remote $ f t) HNil

where remote y = K (t, fmap Having y)

As we want to regard a hypersequent as a multiset of components, we allow per-

mutation and concatenation of hypersequents. First, exchange function changes the

positions of the first two components:

exchange :: K t a :*: K s b :*: l -> IO (K s b :*: K t a :*: l)

exchange (HCons x (HCons y rest)) = return $ HCons y $ HCons x rest

Second, cycling functions puts the last component in the first position. In order to

implement this function, we defined a type class called HLast. The type class instance

HLast l a heads means that the hypersequent l is a concatenation of heads and

a singleton list made of a. In other words, the last element of l is a and the rest
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is heads. This tactic of defining a type class is taken from the paper of heteroge-

neous collections [88]. By exchange and cycling, we can perform all permutations of

hypersequents3.

First, we declare the type class HLast. Here we use functional dependencies [84]

to specify that the choice of type l uniquely determines the types a and heads that

satisfies HLast l a heads (if there exists such a and heads at all). In other words,

HLast is actually a partial function that takes type l and returns types a and heads.

class HLast l a heads | l -> a, l -> heads

where hLast :: l -> (a, heads)

The HLast is defined on hypersequents inductively.

instance HLast (HCons a HNil) a HNil

where hLast (HCons x HNil) = (x, HNil)

instance (HLast (HCons lh ll) a heads) =>

(HLast (HCons b (HCons lh ll)) a (HCons b heads))

where hLast (HCons y rest) =

case hLast rest of

(x, oldheads) -> (x, HCons y oldheads)

Using this type class HLast, we can define cycling function, which moves the last

element of a hypersequent to the first position.

cycling_ :: HLast l a heads => l -> HCons a heads

cycling_ lst = case hLast lst of

(last_, heads) -> HCons last_ heads

cycling :: HLast l last heads => IO l -> IO (HCons last heads)

cycling = fmap cycling_

Finally, we provide concatenation of hypersequents with follows function. Again,

we prepare a type class called HAppend for this. This technique is also from Kiselyov

et al. [88].

follows :: HAppend l l’ l’’ => IO l -> IO l’ -> IO l’’

follows l0 l1 = do

h0 <- l0

3This implementation of permutations comes from Tatsuya Abe’s implementation of a typed

lambda calculus for modal logic K. Tatsuya Abe showed the Agda [24] implementation to the author

in Tokyo.
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h1 <- l1

return $ hAppend h0 h1

class HAppend l l’ l’’ | l l’ -> l’’

where hAppend :: l -> l’ -> l’’

instance HyperSequent l => HAppend HNil l l

where hAppend HNil = id

instance (HyperSequent l, HAppend l l’ l’’)

=> HAppend (HCons x l) l’ (HCons x l’’)

where hAppend (HCons x l) = HCons x. hAppend l

In addition to simple permutations of hypersequents, we have another structural

rule called external contraction. When a hypersequent begins with two components

of the same type, they can be merged into one. The resulting component represents

the computation of trying the two original components one by one until one of them is

successful or all components fail. The type of choice reveals that the two components

of the same type K t a are squashed into a single component.

choice :: Thread t => K t a :*: K t a :*: l -> IO (K t a :*: l)

choice (HCons (K (_, comp0))

(HCons (K (_, comp1)) rest)) =

return $ HCons (K (t, result)) rest

where

result = do

r0 <- comp0

case r0 of

Having a -> return $ Having a

Done TryAnotherJob -> comp1

Done Finished -> return $ Done Finished

It is possible to compose a piece of local computation with another piece of com-

putation and obtain a new piece of local computation. For that purpose, we prepare

extend function.

extend :: Thread t => (K t a -> IO (JobStatus b)) -> K t a -> K t b

extend trans r = K (t, trans r)

Such transformations of local computation can be changed into transformations of

hypersequents.
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infixr 4 -*-

(-*-) :: (Thread t, HyperSequent l, HyperSequent l’) =>

(t -> a -> IO b) -> (l -> IO l’) ->

HCons (K t a) l -> IO (HCons (K t b) l’)

(-*-) = progress_ . extend . peek . lmaybe

where

lmaybe _ _ (Done x) = return (Done x)

lmaybe f th (Having x) = do

y <- f th x

return $ Having y

progress_ :: (HyperSequent l, HyperSequent l’) =>

(a -> b) -> (l -> IO l’) -> HCons a l ->

IO (HCons b l’)

progress_ hdf tlf (HCons ax bl) = do

newtl <- tlf bl

return $ HCons (hdf ax) newtl

In such transformations, the extending function must receive the result of the

previous function. This is achieved with the help of peek function.

peek :: Thread t => (t -> JobStatus a -> IO b) -> K t a -> IO b

peek f (K (th, content)) = content >>= f th

The most interesting library function comm makes two threads compute something,

write it to the shared memory, reads peer’s write if possible and then continue compu-

tation. We split a thread’s computation into two parts: one part up to the write and

the other from the read operation. The former part is hidden in the local computation

whereas the latter part is stored in the hypersequent so that the types of the latest

computation are visible to the user of the library. comm stands for communication.

comm combines two hypersequents each containing a communicating component. It

can be used in the form comm hypersequent1 error1 hypersequent2 error2 where

error1 and error2 specifies what to do in case of read failure.

comm :: (Thread s, Thread t, HAppend l l’ l’’) =>

IO (HCons (K t (b,a)) l)

-> (t -> b -> IO ThreadStatus)

-> IO (HCons (K s (d,c)) l’)

-> (s -> d -> IO ThreadStatus)

132



-> IO (K t (b, c) :*: (K s (d, a) :*: l’’))

comm x terror y serror = do

HCons (K (taT, tba)) l <- x

HCons (K (scT, sdc)) l’ <- y

abox <- newEmptyMVar

cbox <- newEmptyMVar

return $ let

tbc = comm_part tba abox cbox terror taT

sda = comm_part sdc cbox abox serror scT

in

HCons (K (taT, tbc))

(HCons (K (scT, sda)) (hAppend l l’))

where

comm_part tba wbox rbox err th = do

maybeba <- tba

case maybeba of

Done thStatus -> return $ Done thStatus

Having (tb, ta) -> do

_ <- tryPutMVar wbox ta -- writing

cval <- tryTakeMVar rbox -- reading

case cval of

Nothing -> do

terror_result <- err th tb

return $ Done terror_result

Just cva -> return $ Having (tb, cva)

In the sixth and seventh lines counted from the bottom, both threads perform write

and then read so that at least one direction of communication is successful.

5.5 Capturing Waitfreedom

Since this chapter presents a library for waitfree computation, it is desirable that

only waitfree computation can be implemented using this library (soundness), and all

waitfree computation can be implemented using this library (completeness).

5.5.1 Soundness

In the library code, the worker threads only use non-blocking MVar operations (a

blocking operation readMVar is used but by the main thread). This ensures that only
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waitfree computation can be implemented using this library unless the user explicitly

uses other communication primitives from outside of this library.

5.5.2 Completeness

We show the completeness by solving a problem called the participating set problem

appearing in Borowsky and Gafni [23]. In the participating set problem, threads obtain

no input except their own id’s. Each thread i outputs a set Si of thread id’s satisfying

the following conditions:

1. i ∈ Si,

2. Si ⊆ Sj or Sj ⊆ Si for any i, j

3. i ∈ Sj implies Si ⊆ Sj .

We can solve any waitfree protocol by repeating solving a finite number of the partic-

ipating set problem instances.

Intuitively, this can be achieved by making every thread write its id to the shared

memory and then read others’ writes from the shared memory. The results are deter-

mined by the speed competition among the threads. Thread i’s output Si contains

those threads that has already written by the time i reads. However, we have to de-

compose this intuitive solution into pieces of two-thread communication in order to

implement the solution using our library.

As an example, we treat the three-thread case. The three threads are named ZeroT,

FirstT and SecondT.

First, each thread computes its own id and stores it in a tuple.

hOwnId :: Thread t => IO (K t (t, t) :*: HNil)

Then, ZeroT and FirstT compete. This results in the following hypersequent, which

means that either ZeroT obtains FirstT’s id or FirstT obtains ZeroT’s id.

IO (K ZeroT (ZeroT, FirstT) :*: K FirstT (FirstT, ZeroT) :*: HNil)

Before SecondT is put in consideration, we make the first two threads to dupli-

cate their possessions so that they can retain the possessions and communicate the

possessions at the same time.

twoBeforeComm :: IO ( K ZeroT ((ZeroT, FirstT), (ZeroT, FirstT)) :*:

K FirstT ((FirstT, ZeroT), (FirstT, ZeroT)) :*:

HNil)
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After SecondT competes with ZeroT, we obtain the following hypersequent. FirstT’s

possessions are not changed, but ZeroT and SecondT tries to exchange their posses-

sions.

three__ :: IO

(K FirstT ((FirstT, ZeroT), (FirstT, ZeroT)) :*:

K ZeroT ((ZeroT, FirstT), SecondT) :*:

K SecondT (SecondT, (ZeroT, FirstT)) :*: HNil)

Finally, SecondT competes with FirstT. This makes a hypersequent with any compo-

nent containing all thread’s ids. Since at least one component succeeds, at least one

thread obtains all threads’ ids.

However, the participating set problem requires more. The following output does

not conform to the problem although one thread has obtained all threads’ ids. Either

S0 ⊆ S2 or S2 ⊆ S0 is required but neither is satisfied.

Thread 1: obtained [1,0,2]

Thread 0: obtained [0]

Thread 2: obtained [2]

In this case threads 0 and 2 have to compete in order to decide which is slower. In

general, either ZeroT–SecondT or FirstT–SecondT competition is required so we do

both and concatenate the three competitions as one derivation. Both of the two-thread

competitions are similar to the simplest nontrivial waitfree protocol already explained

so we omit the details. The whole program is shown in Figure 5.2.

main :: IO ()

main = execute $three ‘follows‘ twoMid ‘follows‘ twoLast

5.6 Comparison with Gödel-Dummett Logic

5.6.1 Similarity

There are many functional programming languages (OCaml, Haskell, Clean etc.) that

employ intuitionistic logic for their type systems. The hypersequent formulation that

we employ is very similar to that of Gödel-Dummett logic, which is among intermediate

logics [137] between intuitionistic and classical logics.

Gödel-Dummett logic [43] was originally introduced as a logic obtained by adding

axioms of the form (φ→ ψ) ∨ (ψ → φ) to intuitionistic propositional logic.
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Avron [8] proposed an alternative formulation of the same logic. Instead of the

axioms (φ → ψ) ∨ (ψ → φ), he included the “communication rule” on hypersequent

derivations:

H0 Γ0,∆0 ⊢ φ0 H1 Γ1,∆1 ⊢ φ1

H0 H1 Γ0,∆1 ⊢ φ0 Γ1,∆0 ⊢ φ1

where Γi and ∆i are finite sets of formulae. This communication rule inspired the

author to model waitfree computation using hypersequents by using a rule

H0 K t a H1 K s b

H0 H1 K t b K s a

Avron [8] has proved that a sequent derivable with cut rules is also provable without

cuts (Gentzen’s proof adopted). However, he still wanted to see what the correspond-

ing typed lambda calculus looks like, saying “it seems to us extremely important to

determine the exact computational content of them [intermediate logics]—and to de-

velop corresponding ‘λ-calculi’ ” [8]. Since we are working on a constructive logic, it is

natural to ask what chooses the left or right for a term of the type (φ ⊃ ψ)∨ (ψ ⊃ φ).

The answer is actually the execution time scheduling among threads.

5.6.2 Difference

Gödel-Dummett logic does not have modalities. Its formulae are the same as intuition-

istic or classical logic. The only difference of Gödel-Dummett logic from intuitionistic

logic is that more formulae are provable in Gödel-Dummett logic than in intuitionistic

logic. So, if we want to encode Gödel-Dummett logic faithfully, we do not have to

introduce modalities such as K t. Even without such modalities, we can regard each

component of a hypersequent as a thread. However, If we abandon modalities and

regard components of a hypersequent as threads, the participating set problem cannot

be solved because the communication rule splits the threads into two separate groups

and any prior inter-group communication is prohibited.

This restriction would be OK if we were only interested in making sure that at least

one thread knows every other thread. However, since the participating set problem

does not allow any two threads to be ignorant of each other, the comm rule cannot

provide enough communication power to solve the participating set problem for the

components of a hypersequent if we do not have the modalities.
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5.7 Related Work

5.7.1 Computational Content of Hypersequents

Fermüller [48] developed a so-called parallel dialogue games. It is based on Lorenzen

dialogue . It is basically proof searching from bottom to up with player supposed to

know the answer proof tree and opponent directing for different parts of the proof.

Since the game rules are translation of hypersequent calculus, the global game state

has local parts. And the player can, for example, duplicate a local part into two.

This is essentially different from the typed lambda calculi computation because the

games give meanings to only normal form proofs while the typed lambda calculi give

meanings to all proofs.

5.7.2 High Level Treatment of Concurrency

Erlang [5] is a programming language designed for concurrency using the Actor model

by Hewitt et al. [73]. Since the Actor model separates the sender of a message from

the message itself, it provides some asynchrony. However, in the Actor model and

in Erlang, a thread can wait for a message. Thus, these do not provide waitfree

communication.

Asynchronous π-calculus by Honda and Tokoro [79] is a fragment of π-calculus. It

is similar to the Actor Model in that it is impossible to do something after sending a

message. However, asynchronous π-calculus allows a process to wait for a channel to

deliver a message. Thus, asynchronous π-calculus is not waitfree.

Concurrent ML [123] “provides a high-level model of concurrency.” However, its

basic communication primitives accept and send are blocking operations so that there

is no fragment of the language capturing waitfreedom.

Brown [25] proposed a combinator library for message-passing programming in

Haskell. However, this work is also for synchronous communication with blocking

operations and there is no way of obtaining a waitfree fragment of this library.

Join patterns (first proposed as the join calculus by Fournet and Gonthier [51])

allow consuming messages from a group of channels simultaneously. This involves

waiting for a group of channels so that join patterns do not capture waitfreedom

either.

In multi-core and multi-processor environment, synchronous communication is

time-consuming. Compared with synchronous communication, waitfreedom can be

implemented in a less time-consuming manner. Since our library interface captures
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waitfreedom, it is possible to build a less time-consuming implementation for this in-

terface although the current implementation relies on MVar cells, which internally use

spin locks.

5.8 Future Work and Conclusions

Ciabattoni, Galatos, and Terui [30] showed a class of logics can be defined using

hypersequent derivation rules. It will be interesting to see what kind of computation

is represented by these logics.

The library presented in this chapter deals with both waitfree communication and

thread management. It would be better if we dealt with these different tasks separately.

We seek to expand the notion of threads into more complicated processes so that we

can treat dynamic forking and merging threads rather than a finite set of threads

specified at compile-time.

Although we were able to implement the participating set problem, the implemen-

tation is not short or symmetric. There seems to be room for more elegant abstraction

for symmetric protocols such as a rule containing more than two threads and a more

direct embedding of the participating set problem. The main challenge is encoding the

n-party participating set problem in the Haskell type system uniformly with respect

to n.

Moreover, in order to obtain performance, we have to change the runtime system

of Haskell. Since the current implementation uses MVar mechanism that involve spin-

locks, it must be unnecessarily slow. In theory, waitfree computation can be imple-

mented without locks. In practice also, with sequential consistency, we can implement

waitfree computation without locks.

One possible extension of our library is addition of an “all-possible-results” mode.

When we execute a program under this mode, the library explores all possible execu-

tions and returns what can happen.

Notwithstanding, since we have shown that hypersequent based waitfree compu-

tation is implementable. This at least supports the statement of Theorem 3.4.3 in

Chapter 3. Also as a side-effect, we obtained a type-checking implementation of a

hyper-lambda calculus.
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handle :: PortID -> IO Handle

handle p = withSocketsDo $ do

s <- listenOn p

(h,\_,\_) <- accept s

hSetBuffering h NoBuffering

return h

prepareHandle :: Thread t => PortID -> IO (K t Handle :*: HNil)

prepareHandle p = single $ handle p

readLine :: Thread t => t -> Handle -> IO ((Handle, String), String)

readLine th h = do

hPutStr h $ (show $ atid th) ++ " requiring input: "

str <- hGetLine h

return ((h, str), str)

readH :: Thread t => PortID -> IO (K t ((Handle, String), String) :*: HNil)

readH p = prepareHandle p >>= (readLine -*- return)

printTaken :: Thread t => t -> ((Handle, String), String) -> IO ()

printTaken th ((h, selfs), peers) = do

hPutStrLn h $ (show $ atid th) ++ " got: " ++ show (selfs, peers)

return ()

twoPrints :: K ZeroT ((Handle, String), String) :*:

K (SucT ZeroT) ((Handle, String), String) :*: HNil

-> IO (K ZeroT () :*: K (SucT ZeroT) () :*: HNil)

twoPrints = printTaken -*- printTaken -*- return

rerror :: Thread t => t -> (Handle, a) -> IO ()

rerror th (h, _) = hPutStrLn h $ "Thread " ++ (show $ atid th) ++

" failed to read peer’s input."

content :: IO (K ZeroT () :*: K (SucT ZeroT) () :*: HNil)

content = comm (readH $ PortNumber 6000) rerror (readH $ PortNumber 6001) rerror

>>= twoPrints

main :: IO ()

main = execute content

Figure 5.1: An example program. :*: delimits components. Library imports are

omitted. This program spawns two threads each waiting for a TCP connection. The

two threads do waitfree communication, so the slowest thread obtains the inputs for

all threads. 139



failOut :: t -> a -> IO ThreadStatus

failOut _ _ = return TryAnotherJob

hOwnId = single $ return (t, t)

putWithName :: Thread t => t -> String -> IO ()

putWithName th content = putStrLn $ "Thread " ++ (show $ atid th) ++ ": " ++ content

putResult :: Thread t => t -> String -> IO ThreadStatus

putResult th str = do

putWithName th $ "obtained " ++ str

return Finished

putOneResult :: (Thread t, Thread s) => s -> t -> IO ThreadStatus

putOneResult owner content = putResult owner $ show $ [atid content]

putTwoResults :: (Thread s, Thread t, Thread u) => u -> (s,t) -> IO ThreadStatus

putTwoResults owner (c0, c1) = putResult owner $ show $ [atid c0, atid c1]

two :: (Thread s, Thread t) => IO (K s (s, t) :*: (K t (t, s) :*: HNil))

two = comm hOwnId failOut hOwnId failOut

twoBeforeComm :: IO (K ZeroT ((ZeroT, FirstT), (ZeroT, FirstT)) :*:

K FirstT ((FirstT, ZeroT), (FirstT, ZeroT)) :*: HNil)

twoBeforeComm = two >>= (duplicateTwo -*- duplicateTwo -*- return)

where duplicateTwo _ x = return (x,x)

printThreeResults0 :: (Thread u, Thread s, Thread t, Thread v) =>

u -> (s,(t,v)) -> IO ThreadStatus

printThreeResults0 owner (c0, (c1, c2)) = putResult owner $ show $

[atid c0, atid c1, atid c2]

printThreeResults1 owner ((c0, c1), c2) = putResult owner $ show $

[atid c0, atid c1, atid c2]

three :: IO (K FirstT ThreadStatus :*: K SecondT ThreadStatus :*:

K ZeroT ThreadStatus :*: K SecondT ThreadStatus :*: HNil)

three = comm (cycling $ comm twoBeforeComm putTwoResults hOwnId failOut)

putTwoResults hOwnId failOut

>>= (printThreeResults1 -*- printThreeResults0 -*- printThreeResults1

-*- printThreeResults0 -*- return)

twoLast :: IO ((K FirstT ThreadStatus) :*: (K SecondT ThreadStatus) :*: HNil)

twoLast = comm hOwnId putOneResult hOwnId putOneResult >>=

(putTwoResults -*- putTwoResults -*- return)

twoMid :: IO ((K ZeroT ThreadStatus) :*: (K SecondT ThreadStatus) :*: HNil)

twoMid = comm hOwnId putOneResult hOwnId failOut >>=

(putTwoResults -*- putTwoResults -*- return)

main = execute (three ‘follows‘ twoMid ‘follows‘ twoLast)

Figure 5.2: An implementation for participating set problem [23] for three threads.
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Chapter 6

Conclusions

6.1 Overview

We gave mainly two inventions: hyper-lambda calculi and a new axiomatization of

Abelian logic. Since we are just beginning to understand the computational seman-

tics of some concrete examples of substructural logics, the remaining space is vast.

Reflecting the wide applications of substructural and especially intermediate logics,

our conclusions and variety of future work span from mathematical logic, computer

science and philosophy.

6.2 From Logical Perspectives

6.2.1 Generalization

We have seen two particular hyper-lambda calculi for two logics. Ciabattoni et al. [30]

classified axioms according to their syntactic complexities and identified classes of

axioms that can be translated into structural sequent calculus rules and structural

hypersequent calculus rules. According to their classification, the prelinearity axiom

(φ ⊸ ψ) ⊕ (ψ ⊸ φ) and the Amida axiom (φ ⊸ ψ) ⊗ (ψ ⊸ φ) belong to P2, a

class whose elements can be translated into a finite set of hypersequent structural

rules. Other classes N2 and P3 of axioms can also be translated into finite sets of

hypersequent structural rules, thus, we expect the technique of hyper-lambda calculi

applicable to logics with these axioms on top of FLe.

One particular logic worth trying is the logic characterized by Kripke models with

bounded width [29]. Since Gödel-Dummett logic is a special case of the bounding

width 1, the generalization of width k will provide waitfree computation on weaker

shared memory consistency. Further, an ambitious goal is to develop a general frame-
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work with which we can develop hyper-lambda calculi for all logics characterized by

axioms in class P3. Another target is the logic with the weak excluded-middle ¬φ∨¬¬φ
on top of intuitionistic logic. Since the cut-elimination proof in [30] is algebraic, we are

yet to know the computational meaning of the cut-elimination. Aforementioned frame-

work would clarify the computational meaning of the cut-elimination of hypersequent

calculi.

6.2.2 The Amida Calculus

As we saw in Subsection 2.8.2, the deduction system underlying the Amida calculus

does not enjoy cut-elimination in the strict sense. Moreover, since the Amida calculus

characterizes Abelian logic (Theorem 2.5.1), there are some inhabited types that are

hard to justify constructively; for example a linear version of the excluded middle φ⊕
(φ⊸ 1). The first step would be removing additives and studying the multiplicative

fragment of the Amida calculus.

6.2.3 Gödel-Dummett Logic

In logical point of view, the lambda calculus in Chapter 3 is too complicated for Gödel-

Dummett logic. For example, the notion of processes are actually not needed to study

Gödel-Dummett logic. However, with the help of these additional constructions, we

were able to identify the computational nature of Gödel-Dummett logic as that of

waitfree computation. In order to exploit our discovery, we have to extend the char-

acterization to the realm of proof searching. That is, designing a logic programming

language using waitfree communication during parallel proof searching.

6.2.4 More General Fuzzy Logics

Since we have identified the computational content of the prelinearity axiom and ob-

tained a lambda calculus for monoidal t-norm logic, we are in a good position to

study fuzzy logics in general. After all, monoidal t-norm logic is the weakest fuzzy

logic. Thus, there is a possibility to obtain a lambda calculus for any fuzzy logic by

extending the lambda calculus in Chapter 4. The next target is  Lukasiewicz logic.

 Lukasiewicz logic is so similar to ordinary logics that there have been attempts to

formalize mathematics on it [67, 68, 148]. Metcalfe et al. [103, Theorem 9] showed

that a fragment of Abelian logic coincides with  Lukasiewicz logic.
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6.3 From Computer Science Perspectives

6.3.1 Implementation

In Chapter 5, we implemented a hyper-lambda calculus for waitfree computation on

top of Haskell [98]. The implementation is a prototype for showing that the design of

λ-GD is implementable. Internally, the implementation still uses locks but we should

remove locks if we try to put the library to performance sensitive uses. In order to

remove locks, we probably have to modify the runtime system of Haskell. Externally,

the implementation lacks primitive support for more than two party communication.

Although we can implement arbitrary n-party waitfree communication using the cur-

rent two-party primitive, having a primitive serving more parties is desirable. In order

to provide more than two-party primitives, we have to define a more complicated type

class, which we expect to be achievable.

6.3.2 Further Implementation

Since Abelian logic is incompatible with contraction or weakening, straightforward

implementation the Amida calculus on top of Haskell or OCaml would not be a good

way to exploit the safety of the Amida calculus. Although Clean [113] offers uniqueness

types, uniqueness types only reject contraction but accept weakening, so Clean is not

suitable either.

One promising framework on which to implement the Amida calculus is linear

ML1, whose type system is based on linear logic. Another way is using the type level

programming technique of Haskell. Imai et al. [83] implemented session types on top

of Haskell using the type level programming technique using Session monad. Since

Haskell types can contain arbitrary trees of symbols, they were able to encode ses-

sion type information in Haskell types. Logically, this corresponds to having atomic

formulae with complicated structure so that we can encode session information in

atomic formulae. The advantage would be usability of existing Haskell infrastructure

including the optimizing compilers, execution environments, and libraries. The dis-

advantage, which the first author of [83] told me personally, is the compiler’s cryptic

error messages. Since the used Haskell compiler is not aware of session types and just

reports pattern-matching errors in the encoding of session types, the error messages

are about the encoding but not about the originally intended session types.

1Although there are no publications available, there is an implementation at

https://github.com/pikatchu/LinearML .
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6.3.3 Reasoning about Hyper-Lambda Terms

The Amida edges introduced in Section 2.6 can be applied to other methods than

proof nets. For example, in the game semantics of lambda calculi [86], strategies

are represented by Nakajima trees [112]. Then we can expect the Amida edges on

Nakajima trees to represent a strategy of the game semantics for Abelian logic. Also,

the Amida edges works on paths, it should be compatible to the path-based semantics

by Danos and Regnier [39]. Since the Amida edges define permutation on the ends of

edges in a proof net, and hence can be represented as a matrix, it should be compatible

to Geometry of Interaction [60].

6.3.4 Mixing Synchronous and Asynchronous Communication

Our hyper-lambda calculus in Chapter 2 incorporates synchronous communication and

another hyper-lambda calculus in Chapter 3 incorporates asynchronous communica-

tion. In order to unify these two paradigm, the most straightforward way is to nest

hypersequents

t0 (t1 t2) t3 .

where t1 and t2 are combined conjunctively but other delimiters are interpreted dis-

junctively. However, this kind of nesting representation has a limitation because of its

tree structure: it is not clear how we can represent three threads t0, t1 and t2 where

either e0 and e1 succeed or e0 and e2 succeed. If we take the idea of event struc-

ture [147], we could make a deduction system where each inference step results in a

coherence space whose elements are sequents.

6.3.5 Understanding Waitfreedom

Although the definition of waitfreedom is operational (Section 3.3), there is a topo-

logical characterization [72, 125] of waitfreely solvable problems using contractibility.

Since we have obtained a logical characterization, studying the direct connection be-

tween the logical and topological characterizations would be interesting.

6.4 From Philosophical Perspectives

Mathematical logic first succeeded in formalizing mathematics. After that, there have

been many attempts to investigate analytic philosophy using formal logics: relevance

logic, modal epistemic logics [69], dynamic epistemic logic [140], inquisitive logic [32],

deontic logics [143] and so on. Among those investigations, in some cases, substructural

144



logics play important roles. For example, relevance logic is a famous substructural logic

lacking weakening and inquisitive logic is a “weak logic” (a logic possibly without

substitution-closedness) between intuitionistic and classical logics [32].

Gödel-Dummett logic [43] was invented for algebraic reasons, but now we found

a constructive justification of Dummett’s axiom (φ ⊃ ψ) ∨ (ψ ⊃ φ) as the result of

speed-racing during proof reduction. Since the semantics presented in Chapter 3 seems

somewhat too complicated, there is room for simplification and better understanding

of Gödel-Dummett logic.

Abelian logic can provide a way to express exchanges and indebtedness. The Amida

axiom (φ ⊸ ψ) ⊗ (ψ ⊸ φ) can describe two agents’ exchange of φ and ψ between

two agents or one agent’s borrowing of φ for ψ and returning φ for ψ. Since analysis

of pattern of exchange is an important subject of anthropology [97], Abelian logic can

provide a basis for describing social and cultural phenomena.

Dynamic epistemic logic [140], or its fragment called public announcement logic, is

a modal logic that has a modality for agents’ knowledge and announcements. However,

in the current formulation of dynamic epistemic logic, we cannot formalize the effect

of repetitions2 of announcements or cancels of announcements. In Abelian logic, we

can multiply any formula with any integer, thus there is a possibility of representing

repetition or cancels of announcements using a modal logic based on Abelian logic.

Also, since Abelian logic is modeled by Abelian groups, it can express the sense

of indebtedness or obligation in a quantitative way. Deontic logic [101, 143] tried to

capture permission, obligation and so on. Using Abelian logic, we hope to address how

much duty is imposed. Since the Amida calculus can reduce some proofs in Abelian

logic, it could provide a way to analyze a complicated situation where many kinds of

obligations and permissions of different significance are interwound.

2The point is distinguishing a single announcement from repeated announcements of the same

content. For that, we do not want contraction.
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[33] P. Cintula, P. Hájek, and R. Horč́ık. Formal systems of fuzzy logic and their

fragments. Annals of Pure and Applied Logic, 150(1―3):40–65, 2007.

148
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redex, 74

rule

communication, 17

logical, 17

structural, 17

run, 83

schedule, 82, 105

sequent, 64, 103

sequent calculus, 12

session realizer, 40

session type, see type

singleton global formula, 64

snapshot

final system, 83
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program, 80

propositional, 26, 64
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