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ABSTRACT

We introduce a new state transition system based on Petri net, the generalized Petri net. C. A. Petri

invented Petri net and introduced the duality of Petri net [1]. However, a marking on a net has no dual. On

a generalized Petri net, the dual of a marking is a marking on the dual net, and the dual of a state transition

is a state transition on the dual net. This higher duality is realized by the coherence relation on markings

and the polarity of places and transitions. We construct a game semantics for the multiplicative additive

fragment of linear logic (MALL) on generalized Petri nets. As possible applications of generalized

Petri nets, we propose analysis of system-user interaction and visual representation of quantum system

dynamics.

論文要旨

ペトリネットを基にした拡張ペトリネットという状態遷移系を導入する。ペトリネットを考案

した C.A.ペトリがペトリネットの双対性を導入 [1]したが、マーキングの双対は無かった。拡張

ペトリネットでは、マーキングの双対は双対ネットのマーキングであり、状態遷移の双対は双対

ネットの状態遷移である。この高い双対性は、マーキング上の整合関係とプレースやトランジショ

ンの極性によって得られる。拡張ペトリネットを用いて線形論理の乗法的加法的断片の充満完全

なゲーム意味論を作る。また応用可能性として、システムとユーザの相互関係の解析や、量子系

の動態の視覚的表示を、提案する。
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Chapter 1

Introduction

1.1 Motivation

The motivation, as well as the guideline, for this work is the concept of duality. Duality enables

us to investigate problems from different complementary sides, while keeping the notational

and deductive cost of the investigation lower than double.

1.1.1 Nondeterminism and Concurrency

A fork(2) implementation copies something (concurrency), while a fork(2) user obtains

an unpredictable return value (nondeterminism). This example suggests that nondeterminism

and concurrency are two faces of the same coin. Is there formally definable duality between

nondeterminism and concurrency?

1.1.2 Petri Net Duality

The duality concept of Petri nets appears in a paper by Petri [1]. We conjecture that Petri

net duality represents the duality between nondeterminism and concurrency. The two Petri

nets shown in Figure 1.1 are dual, and we consider these to represent the duality between

concurrency and nondeterminism.

1.2 Contribution

The contributions of this paper are as follows:

1. A new state transition system, the generalized Petri net is presented with possible appli-

cations.
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Figure 1.1: Two simple Petri nets showing concurrency (left) and nondeterminism (right).

(a) A symmetric game semantics for MALL, the multiplicative additive fragment of

linear logic, is presented and shown to be sound.

(b) A visual representation of quantum system, which pays attention to the orthogo-

nality between Hilbert subspaces, is presented.

(c) Possible system modeling, which is aware of the duality between two sides of an

interface, is presented.

2. The duality of Petri nets are extended:

(a) The dual of a marking situation is a marking situation on the dual net.

(b) The dual of a state transition is a state transition on the dual net.

1.3 Structure of this Paper

In Chapter 2 is preliminaries. In Chapter 3, we define the generalized Petri nets and investigate

some of their properties. Our main result, the soundness of the generalized Petri net as a game

semantics for multiplicative additive fragment of linear logic (MALL) appears in Chapter 4.

In Chapter 5, two more adventurous possible applications are shown. We list related works in

Chapter 6. We conclude in Chapter 7.
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Chapter 2

Preliminaries

2.1 Petri Net

Definition 2.1.1. A Petri net N � `P,T,A, ce is a tuple that consists of:

1. P,T,A: disjoint, finite sets.

2. c � AÐ� P � T 8 T � P.

Elements of P are called places, elements of T are transitions, and the elements of A are

arcs of a Petri net `P,T,A, ce. Places and transitions are called locations. We distinguish each

arc to obtain a finer description of the Petri net dynamics. Also, we have a special denotation

for entering arcs and leaving arcs of locations.

Notation 2.1.2. On a Petri net `P,T,A, ce, for a location x > P 8 T, we let Xx, xX b A denote

the sets of arcs defined as:

Xx ��a > A S c�a� � `s, xe�

xX ��a > A S c�a� � `x,de�

Definition 2.1.3. A marking �`M, σe� of a Petri net `P,T,�,�e is a pair that consists of a

finite set M and the locating function σ � M Ð� P.

Definition 2.1.4. A firing relation between two markings `M0, σ0e�te`M1, σ1e for a transition

t > T holds when all of these conditions hold:

1. σ0 IM09M1� σ1 IM09M1 ,

2. A bijection f � Xt Ð� M0 �M1 exists and the equality c�a� � `σ� f �a��, te holds for any

a > Xt, and
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3. A bijection g � tX Ð� M1 � M0 exists and the equality c�a� � `t, σ�g�a��e holds for any

a > tX.

Definition 2.1.5. Marking sequence �`Mi, σie�i>I (on I, a nonempty, successive se-

quence of integers) is a sequence of markings in which any successive two markings

`Mi, σie, `Mi�1, σi�1e �i, i � 1 > I� are in firing relation, that is, `Mi, σie�te`Mi�1, σi�1e for

a transition t > T.

2.2 Coherence Space

Coherence space is an undirected graph in essence, and it provides a standard semantics for

linear logic [2].

Definition 2.2.1 (Coherence Space). A coherence space `M,¨e is a pair of a set M and a

symmetric, reflexive relation ¨ on it.

Given a coherence space `M,¨e, some other relations are induced. Any one relation listed

below with the base set M suffices to define a cohrence space.

notation definition pronunciation

a ¨ b a and b are coherent

a ˝ b a ¨ b and a x b a and b are strictly coherent

a ˚ b a � b or a ~̈ b a and b are incoherent

a ˇ b a ~̈ b a and b are strictly incoherent

Table 2.1: Family of Coherence Relations

Note that the pair `¨,ˇe and the pair of `˚,˝e are complementary: M � M � ¨ @ˇ �

˚ @ ˝. Note also that these four relations are all symmetric, and the coherence ¨ and the

incoherence ˚ are reflexive. The dual of a coherence space `M,¨e is the coherence space

`M,˚e.

In drawings like Figure 2.1, we use a blue solid line to represent coherence relation, and

a red dashed line to represent incoherence relation throughout this paper. So, in Figure 2.1,

these relations hold: a ¨ b, a ˝ b, a ¨ a, b ˚ c, b ˇ c, and a ˚ a.
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a

c

b

Figure 2.1: A coherence space consisting of three elements.

5



Chapter 3

Generalized Petri Nets

C. A. Petri [1] presented the duality of Petri nets. To investigate the duality further, we make

a generalized concept of Petri nets. The extension allows tokens to reside not only on places

but also on transitions. Also, a coherence relation introduced between tokens and polarity of

places and transitions.

The duality for Petri nets have found few uses mainly because of the difficulty in defining

the dual of a marked Petri net [3]. Tokens located in places find no location to reside on the

dual Petri net, where places are turned into transitions. Since we allow tokens to reside on

transitions, we can obtain the dual of marked Petri nets. In addition, we obtain the duality for

a possible execution sequence of markings by adding polarities of places and transitions. The

dual of an execution sequence is an execution sequence on the dual Petri net.

3.1 Definitions

3.1.1 Net

We add polarity for places and transitions.

Definition 3.1.1. A generalized Petri net N � `P,T,A, c, pe is a tuple that consists of:

1. P,T,A: disjoint, finite sets.

2. c � AÐ� P � T 8 T � P.

3. p � P 8 T Ð� ��,��, which satisfies the phasing condition described below.

On a generalized Petri net, for a location x > P 8 T, we let Xx, xX b A denote the sets of arcs

6



defined as:

Xx ��a > A S c�a� � `s, xe�

xX ��a > A S c�a� � `x,de�

Phasing Condition The phasing condition imposed on the polarity p is that if two arcs

a,a� > A start at the same location (c�a� � `x, ye and c�a�� � `x, ze) or end at the same

location (c�a� � `y, xe and c�a�� � `z, xe) then the other locations y and z have the same

polarity p�y� � p�z�.

Elements of P are called places, elements of T are transitions, and elements of A are arcs

of a generalized Petri net `P,T,A, c, pe. Places and transitions are also called locations. The

locations with the negative polarity � are called negative locations, while the locations with

the positive polarity � are called positive locations.

Figure 3.1 is an example of a generalized Petri net.

-

-

-

+

+

+ +

+

+

-

-

Figure 3.1: A generalized Petri net.

3.1.2 Marking Situation

Instead of having multisets as markings on a Petri net, we employ coherence spaces to denote

a state of the generalized Petri net.

Definition 3.1.2. A marking situation `M, σ,¨e of a Petri net `P,T,A, c, pe is a tuple that

consists of :

• M,¨: a set and a relation on it that form a coherence space `M,¨e.

• σ � M Ð� P 8 T.
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The elements of M are called tokens, the relation ¨ is called coherence, and the function σ is

called the locating function of the marking situation.

3.1.3 Dynamics

Instead of having firing relation M�teM� on Petri net markings, we have the evolution relation

between marking situations.

Before defining the evolution relation, we introduce the synchronizing relation on arcs of

a generalized Petri net. Note that the synchronizing relation on arcs defined below is static,

only dependent on the net and not dependent of the marking situation.

Definition 3.1.3 (Synchronizing Relation on Arcs). Synchronizing relation � is defined as the

reflexive, transitive closure of the union ¨c 8 ¨n of the concurrent coherence ¨c on arcs and

the nondeterministic coherence ¨n on arcs, where

• Two arcs a,a� > A are concurrently coherent a ¨c a� when the two arcs start at the same

positive transition or end at the same positive transition.

• Two arcs a,a� > A are nondeterministically coherent a ¨n a� when the two arcs start at

the same negative place or end at the same negative place.

On an evolution, tokens move along arcs like in firing of ordinary Petri nets. When a token

moves along an arc a > A, and there exists another arc a� which is in synchronizing relation

with a (a � a�), then there must be another token that moves along the arc a�.

There are two kinds of arcs: the one kind of arcs flowing into transitions (absorptive);

and the other kind of arcs flows out of transitions (emissive). We obtain a splitting A �

AP�T @ AT�P, where AP�T denotes the set of absorptive arcs and AT�P denote the set of

emissive arcs. We find that the synchronizing relation preserves the splitting.

Proposition 3.1.4. If a � a� for two arcs a,a� > A, either a,a� > AP�T or a,a� > AT�P holds.

Proof. Since the relations ¨c and ¨n on A preserve the splitting, the union of both preserves

it, and the reflexive transitive closure of the union also preserves it. �

This proposition enables us to define a natural splitting A~� � �AP�T ~�� @ �AT�P~��.

Likewise, the synchronizing relation � preserves the four kinds of arcs defined by the polarities

of their start points and their end points: `�,�e, `�,�e, `�,�e, and `�,�e.

Instead of firing relation on Petri nets, we have evolution relation. Just like a transition

fires, an activation of a synchronized class of arcs (an element α of A~�) makes evolution.

We give separate but dual definitions for two kinds of evolution, classified by whether the

activated arcs are absorptive or emissive.
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Definition 3.1.5 (absorptive evolution). For α > AP�T ~�, two marking situations

`M, σ,¨e,`M�, σ�,¨�e and two functions o � α Ð� M, n � α Ð� M�, the absorptive evo-

lution relation `M, σ,¨e
`α,o,ne
ÐÐÐ� `M�, σ�,¨�e holds when the conditions described below are

satisfied. In this definition, the set of consumed tokens M � M� is denoted by Mold, and the set

of produced tokens M� � M is denoted by Mnew.

1. For remaining tokens, their locations do not change, that is, σ IM9M�� σ� IM9M� holds.

2. The functions o and n have specific codomains shown as o � α Ð� Mold and n � α Ð�

Mnew. Also, they satisfy the conditions below. In these, the parent function pa � M� Ð�

´�M� is defined as

pa�m� �
¢̈
¨
¦
¨̈
¤

�mold > Mold S `o�a�,n�a�e � `mold,me� �m > Mnew�

�m� �m > M 9 M��

(a) c�a� � `σ�o�a��, σ��n�a��e holds for any a > α.

(b) For any mold > Mold that is located at a positive place, there is only one a > α that

satisfies o�a� � mold. Likewise, for any mnew > Mnew, that is located at a negative

transition, there is only one a > α that satisfies n�a� � mnew.

(c) For any mold > Mold that is located at a negative place p, the preimage o�1�mold� �

pX and the restriction n IpX is an injection onto an ˚�-clique. Likewise, for any

mnew > Mnew that is located at a positive transition t, the preimage n�1�mnew� �
Xt

and the restriction o IXt is injection onto a ¨-clique.

(d) Two tokens m�

0,m
�

1 > M� are incoherent if and only if there exist m0 > pa�m�

0� and

m1 > pa�m�

1� that satisfies m0 ˚ m1.

Figure 3.2 shows an example of absorptive evolution.

Definition 3.1.6 (emissive evolution). For α > AT�P~�, two marking situations

`M, σ,¨e,`M�, σ�,¨�e and two functions o � α Ð� M, n � α Ð� M�, the emissive evolu-

tion relation `M, σ,¨e
`α,o,ne
ÐÐÐ� `M�, σ�,¨�e holds when the conditions described below are

satisfied. In this definition, the set of consumed tokens M � M� is denoted by Mold, and the set

of produced tokens M� � M is denoted by Mnew.

1. For remaining tokens, their locations do not change, that is, σ IM9M�� σ� IM9M� holds.

2. The functions o and n have specific codomains shown as o � α Ð� Mold and n � α Ð�

Mnew. Also, they satisfy the conditions below. In these, the parent function pa � M� Ð�

9
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Figure 3.2: An example of absorptive evolution. The situation above becomes the situation

below.

´�M� is defined as

pa�m� �
¢̈
¨
¦
¨̈
¤

�mold > Mold S `o�a�,n�a�e � `mold,me� �m > Mnew�

�m� �m > M 9 M��

(a) c�a� � `σ�o�a��, σ��n�a��e holds for any a > α.

(b) For any mold > Mold that is located at a negative transition, there is only one a > α

that satisfies o�a� � mold. Likewise, for any mnew > Mnew, that is located at a

positive place, there is only one a > α that satisfies n�a� � mnew.

(c) For any mold > Mold that is located at a positive transition t, the preimage

o�1�mold� � xX and the restriction n ItX is injection onto a ¨�-clique. Likewise, for
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Figure 3.3: An example of emissive evolution. The situation above becomes the situation

below after two steps of emissive evolutions. The tokens do not merge because the place they

enter is positive.

any mnew > Mnew that is located at a negative place p, the preimage n�1�mnew� �
Xp

and the restriction o IXp is injection onto an ˚-clique.

(d) Two tokens m�

0,m
�

1 > M� are coherent if and only if there exist m0 > pa�m�

0� and

m1 > pa�m�

1� that satisfies m0 ¨ m1.

Definition 3.1.7 (evolution). The evolution relation for α > A~�, two marking situations and

two functions o � α Ð� M, n � α Ð� M� is defined as the union of the absorptive evolution

relation and the emissive evolution relation.

Instead of having marking sequence as a possible history of markings, we introduce the
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concept of evolution sequence of marking situations.

Definition 3.1.8 (evolution sequence). An evolution sequence

E � `M0, σ0,¨0e
`α0,o0,n0e
ÐÐÐÐ� �

`αm�1,om�1,nm�1e
ÐÐÐÐÐÐÐÐ� `Mm, σm,¨me

on a generalized Petri net `P,T,A, c, pe is a sequence of marking situations connected by

evolution relations.

When we need not explicitly denote α,o or n, we write an evolution sequence as

E � �`Mi, σi,¨ie�i>I .

3.2 Properties

3.2.1 Duality

Definition 3.2.1. The dual of the generalized Petri net N � `P,T,A, c, pe is a generalized Petri

net N� � `T,P,A, , c,�pe, where the polarity �p is defined as:

�p�x� �
¢̈
¨
¦
¨̈
¤

� �p�x� � ��

� �p�x� � ��.

The conditions for a generalized Petri net is preserved by taking this dual.

Definition 3.2.2. The dual of the evolution sequence E � `M0, σ0,¨0e
α0,o0,n0
ÐÐÐÐ� �

αm�1,om�1,nm�1
ÐÐÐÐÐÐÐ�

`Mm, σm,¨me is defined as E� � `M0, σ0,˚0e
α0,o0,n0
ÐÐÐÐ� �

αm�1,om�1,nm�1
ÐÐÐÐÐÐÐ� `Mm, σm,˚me.

The main property of the generalized Petri net is that the dual of a evolution sequence on

a net N is a marking situation evolution sequence of the dual net N�.

Theorem 3.2.3. When E is an evolution sequence on a generalized Petri net N, the dual E�

is a marking situation evolution sequence on the dual net N�.

Proof. The definition 3.1.5 of the evolution relation is invariant when we swap the terms

shown below at the same time:

coherence�� incoherence

place�� transition

positive�� negative.

Thus, each successive pair of marking situation in the evolution sequence E� is in evolution

relation on the dual net N�. �

12



3.2.2 Positive Nets are Similar to Ordinary Petri Nets

Definition 3.2.4. A positive net is a generalized Petri net whose locations are all positive.

In a positive net, nothing happens for incoherence. Dynamics of a positive net is that of

an ordinary Petri net, with ¨-cliques as markings and evolution as partial firing: the firing

in the ordinary Petri nets takes two evolution steps, namely absorption (where tokens enter

transitions) and emission (where tokens leave transitions).

3.2.3 Diffusive Nets are Locally Confluent

Definition 3.2.5. A diffusive net is a generalized Petri net whose places are all negative and

whose transitions are all positive.

Theorem 3.2.6 (local confluence of diffusive nets). If `M0, σ0,¨0e
α1,o1,n1
ÐÐÐÐ� `M1, σ1,¨1e and

`M0, σ0,¨0e
α2,o2,n2
ÐÐÐÐ� `M2, σ2,¨2e hold for different α1 and α2 on a diffusive net, there is

another marking situation `M3, σ3,¨3e that satisfies `M1, σ1,¨1e
α2,o2,n2
ÐÐÐÐ� `M3, σ3,¨3e and

`M2, σ2,¨2e
α1,o1,n1
ÐÐÐÐ� `M3, σ3,¨3e.

Proof. This follows easily from the fact that the sets α1 and α2 are disjoint and that the images

o1�α1� and o2�α2� are disjoint. �

3.2.4 Focusing Nets Preserve Number of Tokens

Definition 3.2.7. A focusing net is a generalized Petri net whose places are all positive and

whose transitions are all negative.

On a focusing net, the number of tokens never changes in an evolution. Individual tokens

just move along arcs. No interaction occurs between tokens.

3.3 Timeline and Evolution Structure

In an evolution sequence, a pair of evolutions are chronically ordered when some tokens pro-

duced by an evolution is consumed by another evolution. When such intermediate tokens

do not exist, swapping the two evolution does not hurt the validity of the marking situation

evolution sequence nor does change what happens to individual tokens. When we consider

the evolution sequences before and after the swap of evolutions as equivalent, we make an

application of “true concurrency” concept in the realm of process algebras (Chaprter 2, [4]),

which considers the sequence of global states as redundant and considers the partially ordered

set of events as essential.
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The truly concurrent representation of an evolution sequence is the evolution structure.

The evolution structure is a directed graph whose vertices are tokens that ever appear in the

marking situation evolution sequence and whose edges are occurrences of arcs as elements of

αi in the evolution sequence.

Below, we assume that if a token m appears in Mh and M j, then it also appears in the

intermediate marking situation Mi if h B i B j in any evolution sequence �`Mi, σi,¨ie�i>I .

3.3.1 Construction

Definition 3.3.1 (pre-evolution structure). For an evolution sequence `M0, σ0,¨0e
`α0,o0,n0e
ÐÐÐÐ�

�
`αm�1,σm�1,¨m�1e
ÐÐÐÐÐÐÐÐÐ� `Mm, σm,¨me, the pre-evolution structure is a tuple `M, σ,E,o,n,¨,˚e,

where

• (the set of tokens) M � �i>�0,...,n� Mi

• σ � �i>�0,...,n�σi

• (the set of events) E � �`a, ie Sa > αi for an i > �0, . . . ,n � 1��

• o � E Ð� M is defined as o�`a, ie� � oi�a�

• n � E Ð� M is defined as n�`a, ie� � ni�a�

• ¨� �i>�0,...,n� ¨i

• ˚� �i>�0,...,n� ˚i

Note that σ is still a function.

When there is an event e with o�e� � mo and n�e� � mn, then we say mo is a parent of mn

(mo  mn). The reflexive, transitive closure of  forms a partial order l called the chronic

precedence.

Lemma 3.3.2. If l m holds, l l n l mÔ� l � n or n � m holds.

Proof. When l x n and l l n hold, this means that n is a descendant of l, thus, n appears at

the same as or after l disappears in the evolution sequence. Likewise, when n x m and n l m

hold, this means that m is a descendant of n, thus, m appears at the same time as or after n

disappears in the evolution sequence. Combining these two incurs contradiction. �

Notation 3.3.3. For a token m in a pre-evolution structure, m� denote the set of tokens

�m� Sm� l m�. Likewise, m� denote the set of tokens �m� Sm l m��.
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An indispensable part of truly concurrent representation of marking sequence evolution is

timeline, a chain of parent-child tokens.

Definition 3.3.4 (timeline). A timeline T � �mi�i>I in a pre-evolution structure is a sequence

of tokens in which successive tokens are in parent-child relation, that is, mi  mi�1 holds for

any i, i� 1 > I. Also, a timeline must start with a minimal token and end with a maximal token

in the ordered set `M,le.

We say that m0 is an ancestor of m1 and that m1 is a descendant of m0 when m0 l m1 for

different two tokens (m0 x m1), this is denoted m0 h s1.

Definition 3.3.5. The cooccurrence relation C on the pre-evolution structure

`M,�,�,�,�,¨,˚e is defined as the union of ¨ and ˚:

C �¨ 8 ˚ .
The name of the cooccurrence relation C comes from the fact that `m0,m1e > C holds if

and only if both m0 and m1 are contained in a marking situation Mi of the evolution sequence

�`Mi, σi,¨ie�i>I on which the pre-evolution structure is based.

For a token m, we denote the set of marking situations containing m as m̄ ` I:

m̄ � �i > I Sm > Mi�,

where Mi is a marking situation appearing in the evolution sequence E � �`Mi, σi,¨ie�i>I . By

the construction of the pre-evolution structure, for any token m, m̄ is not empty. Also, for any

index i > I, any timeline T has a token m > T with i > m̄. Actually, the reason for the name

timeline is the fact that a timeline T induces a splitting of I, the index set of the evolution

sequence:

I � +
m>T

m̄,

where each m̄ is a nonempty set of successive integers, and when m h m� holds, every element

of t̄ is smaller than any element of t̄�.

Note also that `m,m�e > C 
� m̄ 9 m̄� x g holds.

Proposition 3.3.6 (timeline and cooccurrence). Two timelines T0,T1 and the cooccurrence

relation C based on an evolution sequence E has the following two properties:

1. For any m0 > T0, there exists m1 > T1 and the two are in cooccurrence relation `m0,m1e >

C.
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2. For any m0,m�

0 > T0 and m1,m�

1 > T1 satisfying `m0,m1e, `m�

0,m
�

1e > C, at least one of

the two conjunctions below holds:

m0 l m�

0 and m1 l m�

1, or

m�

0 l m0 and m�

1 l m1

Proof. Since m̄0 is nonempty, we can take any index i > m̄0 and then find m1 > T1 that satisfies

i > m̄1

Since `m0,m1e > C and `m�

0,m
�

1e > C hold, both intersections m̄0 9 m̄1 and m̄�

0 9 m̄�

1 are

nonempty successive set of integers. When the intersection of the two intersections �m̄0 9

m̄�

0� 9 �m̄1 9 m̄�

1� is not empty, all of the four relations m0 l m�

0, m1 l m�

1, m�

0 l m0 and

m�

1 l m1 hold because m0 � m�

0 and m1 � m�

1 hold. Otherwise when the intersection of the two

intersections �m̄0 9 m̄�

0� 9 �m̄1 9 m̄�

1� is empty, all elements of on intersection is chronically

precedent in comparison with any element of the other intersection. This time, only one of the

two conjunctions holds. �

The structure defined is not yet an evolution structure because there possibly exist two

tokens m,m� > M that are not coherent, incoherent nor chronically ordered. A typical example

is the tokens m0 and m�

1 in the evolution sequence `�m0,m1�,�,�e � `�m�

0,m1�,�,�e �

`�m�

0,m
�

1�,�,�e. Although m�

1 appears after m0 disappears, these tokens are not chronically

ordered because no token produced by the disappearance of m0 is consumed when m�

1 appears.

The evolution structure is obtained by adding coherence, incoherence and chronic prece-

dence by interpolation. The interpolation is possible by the following lemma.

Lemma 3.3.7. For an pre-evolution structure and two tokens m0 and m1 which are not chron-

ically ordered, when we define

D0 � C 9 �m0��m1� � and D1 � C 9 �m0��m1� �,

one of the two conditions below holds:

1. D0 9 D1 is a singleton set �`m0,m1e�.

2. One of the two sets D0 and D1 is empty, and the other is nonempty.

Proof. If D0 9 D1 is nonempty, the condition 1. holds because the only common element of

the sets �m0��m1� � and �m0��m1� � is `m0,m1e, and the condition 2. does not hold because

both D0 and D1 are nonempty.

Otherwise if D0 9 D1 is empty, the condition 2. holds. Either D0 or D1 is nonempty

because, by the statement 1. of Lemma 3.3.6, there is a pair `m0,m�

1e > C, which is also in
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C 9 �m0��m1� �8 �m0��m1� �, making D0 8D1 nonempty. Either D0 or D1 is empty because

if both are nonempty, they have elements `t0, t�0e > D0 and `t1, t�1e > D1. If t0 � t1 � m0, then

`m0,m1e > C and D0 9D1 x g follows. Since at least one of t0 and t1 is not m0 and at least one

of t�0 and t�1 is not m1, the chronic precedence of these elements contradicts the statement 2. of

Lemma 3.3.6. Since one of the sets is empty, the condition 1. does not hold. �

On top of a given pre-evolution structure, we define new relations ˜̈ , ˜̊ , and l̃. They

extend ¨, ˚, and l respectively.

Definition 3.3.8. For two tokens m0 and m1, if the two tokens are chronically ordered, they

are in l̃ relation accordingly:

m0 l m1 Ô� m0 l̃ m1, m1 l m0 Ô� m1 l̃ m0.

If they are not chronically ordered, they are automatically not equal. One of the two conditions

stated in Lemma 3.3.7 holds. If the condition 1. of Lemma 3.3.7 holds, the two tokens are

coherent or incoherent exclusively. Then, they are in the extended (in)coherence relation

accordingly:

m0 ¨ m1 Ô� m0 ˜̈ m1, m0 ˚ m1 Ô� m0 ˜̊ m1.

Otherwise if 2. holds and D0 is not empty, we define an order I on D0. The pair `a,be > D0

is less than the pair `c,de > D0 (denoted `a,be I `c,de) if and only if both c l a and b l d

hold. We let m0 ˜̈ m1 hold when all minimal values in `D0,Ie are pairs of coherent tokens. We

let m0 ˜̊ m1 hold when all minimal values in `D0,Ie are pairs of incoherent tokens. If none of

the above holds, we let m1 l̃ m0 hold.

Likewise, if 2. holds and D1 is not empty, we define an order H on D1. The pair `a,be > D1

is less than the pair `c,de > D1 (denoted `a,be H `c,de) if and only if both a l c and d l b

hold. We let m0 ˜̈ m1 hold when all minimal values in `D1,He are pairs of coherent tokens. We

let m0 ˜̊ m1 hold when all minimal values in `D1,He are pairs of incoherent tokens. If none of

the above holds, we let m0 l̃ m1 hold.

The extended chronic precedence l̃ satisfies this property.

Proposition 3.3.9. The extended chronic precedence l̃ has the following properties with re-

gard to the cooccurrence relation C:

1. If l l̃ m, there exists m� that satisfies both m� l m and `l,m�e > C.

2. Likewise, if m l̃ n, there exists m� that satisfies both m l m� and `n,m�e > C.

Proof. 1. Assume l l̃ m. There are three possible reasons for the extended precedence.
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(a) When l l m holds, we can take m� � l then the statement holds.

(b) When there are more than one minimal values for `D0,Ie, where D0 � C 9

�m��l� �, the nonemptiness of D0 and the condition 1. and 2. of Proposition

3.3.6 yields the existence of m�.

(c) The other case where there are more than one minimal values for `D1,He is in

essence the same as the case 1b above this.

2. Similar.

�

The extended chronic precedence l̃ has reflexivity and antisymmetri, however, the exact

condition for the extended precedence l̃ to have transitivity is not yet found. Using these

extended relations, we define the evolution structure.

Definition 3.3.10. The evolution structure based on a pre-evolution structure is the tuple

`M, σ,E,o,n, ˜̈ , ˜̊ , l̃e.

3.3.2 Properties

Proposition 3.3.11. An evolution structure `M, σ,E,o,n, ˜̈ , ˜̊ , l̃e on a generalized Petri net

`P,T,A, c, pe satisfies all conditions described below. Elements of M are called tokens, and

elements of E are called events. A pair of tokens `m,m�e satisfying m � o�e� and m� � n�e� for

some e > E is called a parent-child pair. A subset M� of M is called synchronic when either

m� ˜̈ m�� or m� ˜̊ m�� holds for any m�,m�� > M�.

1. (integrity) For any two different tokens m,m� > M, only and exactly one of the following

holds: m l̃ m�, m� l̃ m, m ˜̈ m�, or m ˜̊ m�.

2. (chronic atomicity of events) For a parent-child pair `l,ne, there is no token m > M that

satisfies the relation l l̃ m l̃ n although m is neither synchronic with l nor n.

3. (event-coherence interference) For any three tokens m,m0 and m1 with m x m0 and

m x m1, if either `m0,m1e or `m1,m0e is a parent-child pair and σ�m0� is a place, then,

both of these hold:

m0 ˜̊ mÔ� m1 ˜̊ m, m1 ˜̈ mÔ� m0 ˜̈ m.

4. (types of branch) If two different events share a start (resp. end) token, the end (resp.

start) tokens of the events are coherent if the shared start (resp. end) token is located in

a transition, otherwise incoherent.
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5. (simpleness) If two events `a, ie and `a, je share an arc a and a start (resp. end) token

o�`a, ie� � o�`a, je� (resp. n�`a, ie� � n�`a, je�), the two events are identical.

Proof. (integrity) Follows from the Definition 3.3.8.

(chronic atomicity of events) Assume l n and l l̃ m l̃ n hold. By Proposition 3.3.9 there are

two tokens m� and m� that satisfy m� l m l m� and `l,m�e, `m�,ne > C. There is a timeline

Tm containing m�, m and m� in this order. There is another timeline T containing l and n

successively. By Proposition 3.3.6, either `m, le or `m,ne is an element of C.

(event-coherence interference) This follows from the condition 2d of the Definition 3.1.5.

(types of branch) This follows from the conditions 2b, 2c and 2d of the Definition 3.1.5.

(simpleness) This follows from the conditions 2b and 2c of the Definition 3.1.5. �

3.3.3 Evolution Structure Classifies Evolution Sequences

The construction of the evolution structure from an evolution sequence is unique, but not

an injection, so some information is thrown away. When different evolution structure yields

the same evolution structure up to isomorphism, the order of events that are not chronically

ordered is discarded.
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Chapter 4

Game Semantics for MALL

Using generalized Petri nets, we can easily obtain a game semantics for the multiplicative

additive fragment of linear logic (MALL), which is a special case of the game defined in

[5]. A net with initial marking situation represents a formula of MALL, and a proof for the

formula is represented by a winning strategy for the game. The game board is a direct syntactic

translation of the linear formula. The two kinds of places represent two kinds of disjunction,

while the two kinds of transitions represent two kinds of conjunction.

4.1 MALL

The multiplicative additive fragment of linear logic (MALL) lacks the two modalities !, ?

and the four units 0,�,1 and � of the full propositional linear logic, but it has all the linear

connectives a,`,` and &.

4.1.1 Syntax

Atomic Formulae We assume a countably infinite set U of atomic formulae. We also as-

sume that there is an involution ���� � U Ð� U which satisfies X� x X and �X��� � X for any

X > U. Also, we introduce a polarity in U. Some elements of U are positive while the others

are negative. When X is positive, X� is negative, and vice versa.

MALL Formulae The logical formulae of MALL is defined recursively as

F,G ��� X SX� SF aG SF `G SF `G SF & G.

The formula X denotes a positive atomic formula in U. And the formula X� denotes a

negative atomic formula in U. Other forms of formulae are called composite formulae. There

are two kinds of composite formulae: one is synchronous formulae of the forms F aG and
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F `G; the other is asynchronous formulae of the forms F & G and F `G. Note that ���� is

only defined on atomic formulae but not on composite formulae for simplicity.

As an abbreviation, negation ���� of composite formulae are defined recursively using De

Morgan’s dualities as follows:

�F aG�� �� �F� `G��,

�F `G�� �� �F� & G��,

�F `G�� �� �F�
aG��,

�F & G�� �� �F�
`G��.

4.1.2 Proof System: Focusing Proof

The proof system described here is devised by Andreoli in [6]. It is shown to be sound and

complete for the standard sequent calculus of MALL.

In the figures below, F,G stand for formulae, X stands for a positive atom, Γ and ∆ stand

for multisets of formulae containing no asynchronous formula. Θ stands for multisets of

formulae in general.

• Asynchronous phase
Ø Γ 	 Θ,F,G
Ø Γ 	 Θ,F `G

�`�

Ø Γ 	 Θ,F Ø Γ 	 Θ,G
Ø Γ 	 Θ,F & G

�&�

Ø Γ,F 	 Θ
Ø Γ 	 Θ,F

�R 	� (if F is not asynchronous)

• Synchronous phase
Ø Γ � F Ø ∆ � G
Ø Γ,∆ � F aG

�a�

Ø Γ � F
Ø Γ � F `G

�`l�
Ø Γ � G

Ø Γ � F `G
�`r�

Ø Γ 	 F
Ø Γ � F

�R �� (if F is not synchronous)

• Identity and Decision

Ø X � X�
�I�

Ø Γ � F
Ø Γ,F 	

�D�

A formula F is proved when the sequent Ø F 	 is deduced.
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4.2 Linear Petri Net Game

The linear Petri net game is a game played by two players. Throughout a play, a static game

board is fixed, while the game position changes as players make moves.

4.2.1 Game Board

A game board B � `P,T,A, c, pe is a generalized Petri net.

4.2.2 Game Position

A game position `M,¨, σ, τ,S e is a marking situation `M,¨, σe with a turn τ > �P,O� and a

set S ` M of discarded tokens.

The dual position of a position `M,¨, σ, τ,S e is a game position `M,˚, σ,�τ,S e, in which

the coherence space and the turn are taken dual but the locating function σ and the set of

discarded tokens remain the same.

4.2.3 Game

A game `B,Pinite is a pair of a game board B and an initial game position Pinit on it. The initial

game position Pinit has only one token and an empty discarded token set. If the single token is

at a positive location, the first turn is Player’s. Otherwise, the first turn is Opponent’s.

4.2.4 Move

A Player’s move is a sequence of evolutions that satisfies the three conditions below:

1. There exist game positions �Pi��i > �0, . . . ,n�� that that satisfies Pi �
si Pi�1 for all

0 B i B n � 1.

2. All consumed tokens are located at a positive location.

3. All produced tokens are either located at a negative location or consumed by another

absorption or emission.

4. All evolutions except the first one consumes only tokens produced by anothetr evolution

in the move.

When no play is available to Player, Player can pass. An Opponent’s move is an evolution

that consumes a token in a negative location. Opponent can pass when no move is available

to him.
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4.2.5 Winning Condition

No general winning condition for Linear Petri Net Game is defined yet. To model MALL, we

devised a special winning condition described in the next section.

4.3 From MALL Formula to Game

For a given MALL formula, we can construct the corresponding Linear Petri Net Game as

follows:

1. Construct a directed graph whose vertices are sub-formulae of the given formula.

2. Replace the vertices with polarized petri net nodes.

3. Add some supplementary linear petri net nodes and set initial position.

4.3.1 Graph Construction

The directed graph `V,E, ce (c � E Ð� V � V) is constructed as follows.

The set of sub-formulae is the set of vertices V . Even if there are syntactically equivalent

sub-formulae, each ocurrance is treated as an element of V . From a composite sub-formula

F¢G, two edges e1, e2 > E are drawn to F and to G. The locating function c locates the two

edges as c�e1� � `F¢G,Fe and c�e2� � `F¢G,Ge.

The graph `V,E, ce is a rooted tree by construction.

4.3.2 Node Replacement

The vertices are split into places and transitions V � P@T and given polarity π � V Ð� ��1,1�

following these rules.

• A negative atom is a negative place.

• A positive atom is a positive transition.

• A composite formula is

– a negative place if the topmost connective is `,

– a negative transition if the topmost connective is &,

– a positive transition if the topmost connective is a, or

– a positive place if the topmost connective is `.
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Figure 4.1: The game J�A` B�` �A� & B��K
.

These rules translate dual pairs of linear connectives to dual pairs of game locations. We

denote an element of V by the expression of the corresponding subformula when no confusion

is expected.

4.3.3 Supplementary Locations and Initial Position

The definition of constructed tree contains arcs between two places and arcs between transi-

tions. Since the definition of generalized Petri net does not allow such arcs, we add interme-

diate locations for such arcs.

An edge e > E from a transition t0 to a transition t1 is split into two arcs a0 and a1. An

intermediate place p called a glue is introduced and used as the ending location of a0 as well

as the starting location of a1. The polarity of the glue p is the same as that of t0. Edges

connecting two places from p0 to p1 are treated like this. Again this time, the polarity of the

intermediate transition is the same as that of p0.

By the construction described above, we obtain a generalized Petri net. The initial position

of the game is the marking situation with only one token located at the root of the tree. The

first turn is Player’s if the root location is positive, while the first turn is Opponent’s if the root

location is negative.

Figure 4.1 shows an example of a game obtained from a logical formula.
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4.3.4 Winning Condition

By the definition of a move, the game ends when all tokens are located at leaves of the game

board.

To define the winning condition, we need some graph theoretical terminologies.

Definition 4.3.1. The set of edges E of a marking situation `M, σ,¨e is defined as:

E � �`m,m�e > M � M Sm x m��~ �,

where � is the equivalence relation: `m,m�e � `m�,me.

A coherent edge is an edge connecting coherent tokens. An incoherent edge is an edge

connecting incoherent tokens. Any edge is coherent or incoherent, exclusively by the defini-

tion of coherence space.

Definition 4.3.2. A complete mathing µ of a marking situation `M, σ,¨e is a subset of the set

of edges in which each token m > M finds a unique edge connecting it with another token.

When the game ends, Player and Opponent presents a complete matching mP and mO on

tha marking situation at the end of the game. Player wins the game the complete matching µP

satisfies all the conditions below:

1. Any edge in µ connects incoherent tokens located at dual atomic formulae.

2. For any two edges `m0,m1e and `m�

0,m
�

1e, either m0 or m1 is coherent with either m�

0 or

m�

1.

3. For any alternating cycle C of edges in µ and coherent edges, the tokens consisting C are

split into more than one connected components when all coherent edges are removed.

Opponent’s winning condition is similar. In the next subsection, we show that Player’s

and Opponent’s winning conditions contradict.

4.3.5 Winning Condition is equivalent to Danos-Regnier Criterion for MLL Proof Nets

The winning condition of the game is defined so as to match the Danos-Regnier criteria for

MLL (Multiplicative Linear Logic) proof nets. We define a proof net as a proof structure

satisfying the Danos-Regnier criterion, and show that the winning condition is equivalent to

the criterion.

Definition 4.3.3 (Proof Structure and Switch). A proof structure of a play is a graph obtained

by adding a complete matching µ (satisfying the conditon 1. of the winning condition) to the
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evolution structure of a play of a Linear Petri Game. A switch of a proof structure can be

obtained by removing one of the two events flowing out from each token located at a negative

transition and the following glue location and its exit arc (if such a glue location exists).

If a proof structure does not exist, neither Player nor Opponent wins the game. On a proof

structure, if there are n tokens located at a negative transition, there are 2n switches.

Definition 4.3.4 (Danos-Regnier criterion). A proof structure is a proof net when all switches

are connected and acyclic.

A proof structure represents a proof of an MLL formula if and only if it is a proof net [7].

We state that the winning condition is equivalent to the Danos-Regnier criterion.

Proposition 4.3.5. For two edges `m0,m1e, `m�

0,m
�

1e in µ satisfying the winning conditions,

there are either one or four coherent edges between the two.

Proof. By winning condition 2, the number of cohrent edges between the two matching edges

is not zero. If there are two coherent edges, they either form a cycle contradicting the condition

3, or they are an impossible outcome for a tree-like evolution structure. If there are three

coherent edges, they form an impossible outcome for a tree-like evolution structure. Note

that any token-wise restriction of a possible outcome for a tree-like evolution structure can be

split into more than one connected components either by removing all coherent edges or by

removing all incoherent edges if they contain more than one tokens. �

Lemma 4.3.6. The winning conditions imply that the evolution structure of the play is a proof

net.

Proof. (connectedness) If a switch of the evolution structure of the play is not connected,

there is a latest removed event e (latest in the proceeding of the game, possibly not unique)

that connects different connected components of the switch. There is a descendant d of the

token produced in e. The other event e� flowing out from the same negative transition yield a

descendant leaf token f that is not connected to d. By winning condition 2, there are coherent

tokens d� and f � in the same µ-edge as d and f respectively. The coherence between d� and f �

yields contradiction.

(acyclicity) If a cycle exists in a switch, the leaf tokens contained in the cycle form a

counter example for winning condition 3. �

Lemma 4.3.7. If a proof structure of a play is a proof net, the play satisfies the winning

conditions.
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Proof. (1.) By the existence of a proof structure.

(2.) If 2. does not hold, there is a switch that does not connect the two edges, contradicting

the connectedness condition.

(3.) If 3. does not hold, the counter example for 3. represents a cycle C in the evolution

structure. The tokens contained in the cycle C are

1. located at a and unbreakable,

2. located at ` but C does not contain both branching out events, or

3. located at a leaf and connected with another dual leaf token by a µ-edge.

Since any combination of `-choice appears as a switch, there is a switch that contains C. �

Theorem 4.3.8. The following two conditions are equivalent for a play of the game:

1. Player wins the game in the play, and

2. The evolution structure of the play is a proof net.

Proof. By Lemma 4.3.6 and Lemma 4.3.7. �

By Theorem 4.3.8, we can conclude that both players never win the game at the same time.

For any MLL formula F, since MLL proof net is sound, there are no proofs both for F and

for F�. If there is a play of the game JFK that satisfies both Player’s and Opponent’s winning

conditions, the play can be interpreted both as a proof net of F as well as a proof net of F�.

This never happens.

4.4 Proof is Winning Strategy

The logic MLL is a sublogic of MALL. When compared with MALL, MLL simply lacks the

additive connectives &and`, and deduction rules named after these additive connectives.

A proof π of the formula F, if read from the bottom to the leaves, describes a winning strat-

egy on the game JFK. Informally, a sequent in a proof corresponds to a possible combination

of game position and strategic decision.

• A sequent of the form Ø Γ � F denotes a game position where

1. Γ 8 �F� forms a ˚-clique

2. It is Player’s turn

3. Player has decided to move F.
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• A sequent with Ø Γ 	 Θ denotes a game position where

1. Γ 8Θ forms a ˚-clique

2. It is Player’s turn if and only if Θ is empty and there is a synchronous formula in

Γ.

When a game is played following a focusing proof, the play becomes a restriction of the

focusing proof. All ocurrances of ` rules and & rules are removed. So, the play represents

a proof of MLL and the evolution structure is a proof net when the complete matching µ is

defined as the ocurrances of (I) rules.

Theorem 4.4.1. A proof π for the formula F defines a Player’s winning strategy JπK on the

game JFK.

Proof. The strategy chooses an arc flowing out from a positive place according to `-rules in

the proof. This defines Player’s evolutions. The complete matching at the end of the game

is chosen as the (I)-rule occurrences in the proof. The evolution structure can be obtained by

cutting off one branch from each �&�-rules of the proof π. A MLL proof net can be obtained

by replacing the formulae containing` or & with subformulae corresponding to the remaining

branches. Since a MLL proof is obtained, the play is Player’s win. �

Corollary 4.4.2. If there is a winning strategy for the game JF�K, that is the interpretation of

the dual of the formula F, the formula F is unprovable.

Proof. By Theorem 4.4.1, if there is a proof π for F, there is a winning strategy JπK for Player

in the game JFK. Since the difference between the two games JFK and JF�K is just swapping

of Player and Opponent, this is impossible. �

4.5 Discussion

This game is very similar to the game given in [5] although there is a difference: in the game

presented here, every game position is either Player’s or Opponent’s turn, while the game

in [5] permits some game position where both Player and Opponent can make a move. Al-

though the interpretation given in [5] interpretes a MALL formula as a function that combines

games associated with atomic formulae and produces another game, the game presented in

this chapter interpretes a MALL formula as a single game.

The game model presented here has not been extended to wider classes of general Petri

nets. The awkwardness of the integrity condition and the winning condition suggests trying

other possible choices of primitive locations, such as the one which behaves like a positive
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transition for tokens entering but behaves like a negative place for tokens leaving. The con-

nection of this game semantics and the coherence space semantics of linear logic are to be

investigated.
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Chapter 5

Possible Applications

5.1 System-Program Interaction

The linear Petri game can be interpreted as a game between an operating system and user

processes. Player is the system and Opponent is the user processes.

Positive Transition and Negative Place The fork(2) implementation of Linux 2.6 does

copy_process(). This can be depicted as moving a token out of a positive transition, cloning

it. The coherence between the two tokens represents the concurrent situation in which the

parent process and the child process coexist. On the other side, the fork(2) caller gets

nondeterministic return value. This passive nondeterminism is represented by a negative place,

the dual of the positive transition.

Negative Transition and Positive Place A user process sometimes makes unpredictable

system calls with unpredictable arguments such as when the system call is a result of user’s

input. This can be depicted as a token moving out of a negative transition because such a

token choses an arc unpredictably (following Opponent’s will). On the other side, the user

process can choose which system call with what arguments. This active nondeterminism is

represented by a positive place.

5.2 Visual Representation for Quantum System Evolution

In this chapter, we show that the concept of generalized Petri net models some aspects of

quantum systems, both its states and dynamics. We present examples containing phenomena

peculiar to quentum systems, such as creation of entanglements and measurements.
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We introduce coherence relation between subspaces of an inner product space, treating

orthogonal subspaces as strictly incoherent. Since a unitary transformation preserves the inner

product, orthogonal subspaces remain orthogonal after a unitary transformation. The evolution

of marking situations on a generalized Petri net captures this preservation of orthogonality.

The algebraic and logical treatment of Hilbert subspaces can be traced back to quantum

logic presented by Birkhoff and von Neumann. A detailed description of the quantum me-

chanics in this line can be found in [8]. They focus their attention on the distinguishability

of different static quantum states. We present a possible approach of treating dynamics of

quantum systems symbolically.

5.2.1 Representation of State

In this chapter, we only treat pure states, the states whose density matrix forms a projection

operator1 P of a fixed Hilbert space H. The class of such states are closed under unitary

transformations. The projection operator P can be characterized by its image subspace L �

P�H�. When L is one-dimensional, the state is conventionally represented by a unit vector Sφe

contained in L, so we represent any considered state by the subspace L. Actually, all L in this

section can be turned into Sφe safely, but losing some generality. Since the model we give in

this chapter is discrete, it does not matter whether the subspace L is closed under limit. We

denote the orthogonality relation between subspaces as L�L�.

To model a quantum system, we have a special kind of diffusive net, a generalized Petri

net whose transitions are positive and whose places are negative.

Definition 5.2.1 (Quantum Net). A quantum net is a diffusive net whose place does not have

more than one arcs flowing into it.

Definition 5.2.2 (Interpretation for Quantum Net). An interpretation I of a quantum net is a

function that maps places of the net to subspaces of the Hilbert space H.

Since I�p� defines a subspace of H, we obtain the unique projection operator onto the

subspace I�p�, denoted IP�p�.

Now we have all concepts needed to write the condition for the static representation of the

state L. A state L is represented by a marking situation `M,¨, σe and an interpretation I when

all these three conditions hold:

1. all tokens in M are located at places,

2. a place p > P holding a token is interpreted as a subspace not orthogonal to L, that is,

the relation I�σ�m�� ~� L holds for any m > M, and
1A projection operator P is defined as an Hermitian idempotent linear operator.
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Figure 5.1: Different marking situations on the same quantum net with the same interpretation.

Two qubits a and b are are not entangled (left) as in Sφle �
1
2�S0ea S0eb � S0ea S1eb � S1ea S0eb �

S1ea S1eb�. Two qubits a and b are entangled (right) as in Sφre �
1º

2
�S0ea S1eb � S1ea S0eb�.

3. tokens m,m� > M are coherent if and only if the projections are not orthogonal:

�IP�σ�m���L�� ~� �IP�σ�m���L��.

Immediately by the form of the condition, for two marking situations with one including

the other, `M�,¨IM� , σ IM�e represents L if `M,¨, σe represents it (the inclusion M� ` M is

assumed). In other words, the presence of tokens has a meaning but the absence of tokens

does not have a meaning. Especially, a marking situation containing no tokens represents

any quantum state on any interpretation. Especially, a marking situation with no tokens is

represents any quantum state.

Figure 5.1 shows two qubits in entanglement and not in entanglement.

5.2.2 Representation of Dynamics

In this subsection, we depict quantum system evolution as marking situation evolution. An

important property of (and the motivation for defining) quantum nets is the preservation of

strict incoherence.

Theorem 5.2.3 (Preservation of Strict Coherence). In an evolution on the quantum net, the

children of strictly incoherent tokens are strictly incoherent.

Proof. There are two cases: when the evolution is place-to-transition one and when the evo-

lution is transition-to-place one. When the evolution is place-to-transition, the children of

strictly incoherence tokens are strictly incoherent by Definition 3.1.5. When the evolution is

transition-to-place, a produced token has only one parent because not more than one arcs flow
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Figure 5.2: Alice and a qubit: before the measurement (left), after the measurement (right).

Tokens in the places labelled A,A0 and A1 are Alices. Polarities are omitted because all tran-

sitions are positive and all places are negative by the definition of quantum net.

into a place on a quantum net. So, two produced tokens are coherent if and only if the parents

are coherent. �

The preservation of strict coherence implies, tokens representing orthogonal subspaces

remain orthogonal in an evolution sequence. This makes quantum nets suitable for depicting

the quantum system evolution.

5.2.3 Examples

Qubit Observation Figure 5.2 shows a marking situation evolution depicting an observer

(Alice) and a qubit before and after Alice performs a measurement on the qubit.

Observation of Entangled Pair of Qubits In Figure 5.3, Alice and Bob observe an entan-

gled pair of qubits.

5.2.4 Discussion

It is likely that any quantum net, with an appropriate interpretation, represents a theoretically

implementable structure of Hilbert space and some unitary conversions on it, we have not

proved it yet.

It is not clear whether or not the duality presented in Subsection 3.2.1 has some physical

meaning in this visual representation of quantum system evolution. Neither, it is not clear

whether there is a natural rationale for the restriction on the number of arcs flowing into a

place.
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Figure 5.3: Alice, Bob and a pair of entangled qubit: before the measurement (above), after

the measurement (below). The tokens in the places labelled A,A0 and A1 are Alices. The

tokens in the places labelled B, B0 and B1 are Bobs. Polarities are omitted.

The visual representation presented here can be extended to general mixed states if we

consider an arithmetic weighted average of marking situations because any general mixed

states can be represented as an arithmetic weighted average of projection operators.
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Chapter 6

Related Work

6.1 Duality for Marked Petri Nets

There is no previous work in which the duality for marked Petri nets is obtained using the

notion of coherence space although many authors have invented state transition systems based

on Petri net. Some transition systems allow tokens to reside on transitions of a Petri net, but

the role of tokens in transitions and tokens in places are different. For example in the system

of Lautenbach, K. [9], the tokens in places move along arcs when a transition fires; while the

tokens in transitions move along arcs backward when a place fires. Lautenbach explains the

reason for the existence of two types of tokens as:

Supposing now, tokens on transitions (t-tokens in short) will be permitted: How

and by what are they moved? What is their meaning? Moreover, a real enrichment

by the t-tokens is only then conceivable if in a net both types of tokens, t-tokens

and “normal” tokens (place tokens, p-tokens), are permitted. Otherwise, the dual

marked net is nothing but another form of the original one [9].

The generalized Petri net presented here is a counter example to this claim because only one

kind of tokens exists. Instead, the generalized Petri net has two kinds of relations between

tokens: coherence and incoherence.

6.2 Linear Logic

For Petri net models, some completeness results are known for linear logic fragments ([10],

[11]). However, completeness results are known only for intuitionistic fragment of linear

logic, which does not incorporate MALL. For MALL, Abramsky and Melliès [5] created a

game semantics, which is very similar to the Linear Petri Games described in this paper ([5]
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a ` ` &

Irreversible Reversible

Active Passive

Player Opponent

External choice Internal choice

Positive Negative

Table 6.1: Curien’s Summary of Linear Connectives (quoted from [13])

used Petri nets to illustrate the game model although the winning condition was not specified

concretely). The game in [5] is clearly more distant from ordinary games than the Linear Petri

Game in that they permit game positions in which both players can make a move. Melliès [12]

recently established fully complete model of full propositional linear logic, a logic that incor-

porates MALL and is capable of expressing the intuitionistic propositional logic and classical

propositional logic. The game in [12] is defined in an abstract manner and its properties as a

model of linear logic is shown by means of categorical argument.

Curien [13] summarizes the opposition of the positive connectives (a and `) and the

negative connectives (& and `) in Table 6.1. The Linear Petri Game in Chapter 4. depicts

directly and concretely the opposition of the polarities of the linear connectives.

6.3 Logical, or Symbolic Treatment of Quantum Mechanics

The logical treatment of quantum mechanics dates back to quantum logic presented in 1936

by Birkhoff and von Neumann [14]. Quantum logic is an algebraic representation of the

orthogonality and inclusion of Hilbert subspaces [8]. The algebra of quantum logic is different

from Boolean algebra in that the former does not have distributivity. Linear logic also lacks

distributivity for a and ` although the two connectives are dual by negation.

V. Pratt [15] suggests using linear logic as a dynamic expansion of quantum logic. He

argues that quantum logic cannot express quantum state evolution and Heisenberg uncertainty

tradeoff, and that linear logic can express some aspects of state evolution and the uncertainty

tradeoff by an analogy with linear automata. The relation between Pratt’s interpretation of

linear logic and the generalized Petri net representation of quantum systems presented here is

to be investigated.
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Chapter 7

Conclusion

We have defined the generalized Petri net and shown that it has a high duality wholly incor-

porating its dynamics as well as statics (Chapter 3). By constructing a game semantics for

MALL, we found that four primitive locations of generalized Petri nets correspond to the four

connectives of linear logic (Chapter 4). The duality and expressiveness of the generalized

Petri net provide many applications like those presented in Chapter 5, and give deep insight

into possible uses of linear logic (Chapter 6).

This work also yields awaiting investigations especially: a practical modeling of system

interfaces using generalized Petri nets (or possibly using the linear type system), and the

relation between generalized Petri nets and the dynamic extension of quantum logic are to be

sought.
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