逐次一貫性下の知識伝達を表す 直観主義様相論理

Yoichi Hirai

2010-03-03

Overview

Contribution 0: intuitionistic epistemic logic

deduction system, semantics. soundness, strong completeness, disjunction property, finite model property, decidability.

Contribution 1: formalising sequential consistency Sequential consistency as $(K_m \varphi \supset K_m \psi) \lor (K_m \psi \supset K_m \varphi)$. Unexpected application of an intermediate logic.

Contribution 2: decidable abstraction of waitfreely solvable tasks Is a task waitfreely solvable or not? Original task: undecidable Abstract task: decidable

Contribution 1: Formalising Sequential Consistency

Contribution 2: Decidable abstraction of waitfreely solvable tasks

Contribution 2: Decidable abstraction of waitfreely solvable tasks

Contribution 0

Intuitionistic Epistemic Logic

New informal reading of $K_p \varphi$

Formula $\varphi ::= \bot | I | \varphi \land \varphi | \varphi \lor \varphi | \varphi \supset \varphi | K_p \varphi$. Same as classical epistemic logic [Hintikka, 1962].

$${\it K_p}arphi$$
: ${\it p}$ knows $arphi$. (What does "know" mean?)

Classical In all *p*'s possible worlds, φ is true. This work *p* has received a proof of φ .

c.f. justified, true belief as in Plato: Theaetetus.

New informal reading of $K_q K_p \varphi$: COMMUNICATION

$$K_q K_p \varphi$$
: q knows that p knows φ .

Classical In all q's possible worlds, in all p's possible worlds, φ is true. This work q has received a proof of the fact that p has received a proof of φ . Communication from p to q

 $\begin{array}{l} \mathsf{model} \ \left\langle W, \leq, (f_p)_{p \in A} \right\rangle \\ f_p \colon W \to W \colon \mathsf{idempotent}, \ \mathsf{descending}, \ \mathsf{monotonic} \\ \mathsf{valuation} \ \rho \colon \mathsf{PVar} \to \mathcal{P}(W) \qquad \rho(I) \colon \mathsf{downward-closed} \\ \end{array}$

Define $w \models \varphi$ for a state $w \in W$ and a formula φ :

$$w \models \bot \quad \Leftrightarrow \quad \text{never}$$

$$w \models I \quad \Leftrightarrow \quad w \in \rho(I)$$

$$w \models K_{p}\psi \quad \Leftrightarrow \quad f_{p}(w) \models \psi$$

$$w \models \psi_{0} \land \psi_{1} \quad \Leftrightarrow \text{ both } w \models \psi_{0} \text{ and } w \models \psi_{1} \text{ hold}$$

$$w \models \psi_{0} \lor \psi_{1} \quad \Leftrightarrow \text{ either } w \models \psi_{0} \text{ or } w \models \psi_{1} \text{ holds}$$

$$w \models \psi_{0} \supset \psi_{1} \quad \Leftrightarrow v \models \psi_{0} \text{ implies } v \models \psi_{1} \text{ for any } v \ge w.$$

 $\begin{array}{l} \mathsf{model} \ \left< W, \preceq, (f_p)_{p \in A} \right> \\ f_p \colon W \to W \colon \mathsf{idempotent, \, descending, \, monotonic} \end{array}$

past \leq future

model $\langle W, \leq, (f_p)_{p \in A} \rangle$ $f_p \colon W \to W$: idempotent, descending, monotonic

past \leq future

model $\langle W, \leq, (f_p)_{p \in A} \rangle$ $f_p \colon W \to W$: idempotent, descending, monotonic

model $\langle W, \leq, (f_p)_{p \in A} \rangle$ $f_p \colon W \to W$: idempotent, descending, monotonic

past \leq future

 $\begin{array}{l} \mathsf{model} \ \left< W, \leq, (f_p)_{p \in A} \right> \\ f_p \colon W \to W \colon \mathsf{idempotent, \, descending, \, monotonic} \end{array}$

past \leq future

p's state.

 $\begin{array}{l} \mathsf{model} \ \left< W, \leq, (f_p)_{p \in A} \right> \\ f_p \colon W \to W \colon \mathsf{idempotent, \, descending, \, monotonic} \end{array}$

past \leq future p's state. q's state.

Deduction System

$$\begin{array}{l} (\mathsf{T}) \ \frac{\mathsf{\Gamma} \vdash \mathcal{K}_{p}\varphi}{\mathsf{\Gamma} \vdash \varphi} & (\text{introspection}) \ \frac{\mathsf{\Gamma} \vdash \mathcal{K}_{p}\varphi}{\mathsf{\Gamma} \vdash \mathcal{K}_{p}\mathcal{K}_{p}\varphi} \\ (\text{necessitation}) \ \frac{\mathsf{\Gamma} \vdash \varphi}{\mathcal{K}_{p}\mathsf{\Gamma} \vdash \mathcal{K}_{p}\varphi} & (\circ \mathcal{K}) \ \frac{\mathsf{\Gamma} \vdash \mathcal{K}_{p}(\varphi \lor \psi)}{\mathsf{\Gamma} \vdash \mathcal{K}_{p}\varphi \lor \mathcal{K}_{p}\psi} \\ (^{ax)} \ \frac{\varphi \vdash \varphi}{\varphi \vdash \varphi} & (\circ) \ \frac{\mathsf{\Gamma} \vdash \varphi}{\psi, \, \mathsf{\Gamma} \vdash \varphi} & (\circ) \ \frac{\varphi, \varphi, \, \mathsf{\Gamma} \vdash \varphi'}{\varphi, \, \mathsf{\Gamma} \vdash \varphi'} & (\circ) \ \frac{\mathsf{\Gamma} \vdash \varphi, \psi, \, \mathsf{\Gamma}' \vdash \varphi'}{\mathsf{\Gamma}, \psi, \varphi, \, \mathsf{\Gamma}' \vdash \varphi'} \\ (^{A-\mathsf{E}_{0}}) \ \frac{\mathsf{\Gamma} \vdash \varphi \land \psi}{\mathsf{\Gamma} \vdash \varphi} & (^{A-\mathsf{I}}) \ \frac{\mathsf{\Gamma} \vdash \varphi}{\mathsf{\Gamma} \vdash \varphi \land \psi} & (^{A-\mathsf{E}_{1}}) \ \frac{\mathsf{\Gamma} \vdash \varphi \land \psi}{\mathsf{\Gamma} \vdash \varphi \lor \psi} \\ (^{V-\mathsf{I}_{0}}) \ \frac{\mathsf{\Gamma} \vdash \psi}{\mathsf{\Gamma} \vdash \varphi \lor \psi} & (^{V-\mathsf{I}_{1}}) \ \frac{\mathsf{\Gamma} \vdash \psi}{\mathsf{\Gamma} \vdash \psi \lor \varphi} \\ (^{V-\mathsf{I}_{0}}) \ \frac{\varphi, \, \mathsf{\Gamma} \vdash \psi}{\mathsf{\Gamma} \vdash \varphi \lor \psi} & (^{D-\mathsf{E}_{1}}) \ \frac{\mathsf{\Gamma} \vdash \psi_{0} \lor \psi_{1}}{\mathsf{\Gamma} \vdash \psi} \\ (^{D-\mathsf{I}}) \ \frac{\varphi, \, \mathsf{\Gamma} \vdash \psi}{\mathsf{\Gamma} \vdash \varphi \lor \psi} & (^{D-\mathsf{E}_{1}}) \ \frac{\mathsf{\Gamma} \vdash \psi_{0}}{\mathsf{\Gamma} \vdash \psi_{1}} & (^{L-\mathsf{E}}) \ \frac{\mathsf{\Gamma} \vdash 1}{\mathsf{\Gamma} \vdash \varphi} \end{array}$$

Theoretical Results

Soundness and strong completeness $\Gamma \models \varphi \iff \Gamma \vdash \varphi$.

Disjunction property $\vdash \varphi \lor \psi \implies \vdash \varphi \text{ or } \vdash \psi$ by extending Aczel's slash relation.

Defining $f_p(\Gamma)$: agent *p*'s view on a set of formulas Γ . $g_p(\Gamma) = \{\varphi \in \operatorname{Fml} \mid (K_p)^+ \varphi \in \Gamma \text{ and } \varphi \text{ does not begin with } K_p\},$ $f_p(\Gamma) = g_p(\Gamma) \cup K_p g_p(\Gamma) \cup \{\varphi \in \operatorname{Fml} \mid \Gamma \vdash \bot\}.$ (revising, seeking for more general approach.)

Finite model property $M \models \varphi$ for all finite $M \iff M \models \varphi$ for all M by modifying subformula relation in [Sato, 1977]

Decidability It is decidable whether $\vdash \varphi$.

Contribution 1

Modelling Sequential Consistency

Need for shared memory consistency

Assumption: full-information

- A message contains all knowledge of its sender.
- Nothing is ever forgotten.

Even under this assumption, no communication is guaranteed between processes.

Essence of Sequential Consistency

For two memory states, either \leq or \geq holds.

Essence of Sequential Consistency

For two memory states, either \leq or \geq holds.

Logical Background: logic Lin for linear models

Well-known property: $\mathbf{Lin} \vdash \theta \iff M \models \theta$ for all linear model M

(Linear model: for any two states, either \leq or \geq holds.)

A logic SC for Sequential Consistency

$$\begin{split} \textbf{SC} &= \textbf{Int. Epistemic logic} + (\textbf{\textit{K}}_{m}\varphi \supset \textbf{\textit{K}}_{m}\psi) \lor (\textbf{\textit{K}}_{m}\psi \supset \textbf{\textit{K}}_{m}\varphi): \\ & \textbf{Intuitionistic epistemic logic} \subsetneq \textbf{SC} \subsetneq \textbf{Classical logic} \end{split}$$

A result:

$\mathbf{SC} \vdash \theta \Longleftrightarrow M \models \theta \text{ for all sequential model } M$

(Sequential model: for any two memory states, \leq or \geq holds.)

An example theorem under sequential consistency

$$\vdash ((K_{p}K_{m}K_{p}I) \land K_{q}K_{m}K_{q}J) \supset ((K_{q}K_{p}I) \lor K_{p}K_{q}J)$$

Informal reading

- p sends a proof of I to m, then m replies to p.
- q sends a proof of J to m, then m replies to q.
- then, p's knowledge has been transmitted to q, or q's knowledge has been transmitted to p.

A proof of this contains 55 steps (cf. it was 1 step).

Ongoing work: finite model property of SC

Trying to avoid logically possible but computationally impossible schedules like infinite

 $\overbrace{t_0 \leq t_1 \leq t_2 \leq \cdots \leq t_n \ldots} \leq t'$

Status

- 1. Find a proof strategy.
- 2. A gap found. Fix or abort.
- 3. No gaps found. Write and revise until find one. \leftarrow current

Contribution 2

Decidable Abstraction of Waitfreely Solvable Tasks

Waitfree Computation

Sequential consistency: restriction on schedules.

Waitfreedom: restriction on programs.

Informal meaning No process waits for another process.

Formal meaning k exists each process accesses the shared memory at most k times in any scheduling.

Undecidability and decidability

It is **undecidable** whether a task is waitfreely solvable [Gafni and Koutsoupias, 1999]. task: a set of allowed (input values, output values) pairs.

It is decidable whether a communication is waitfreely attainable (new)

Waitfree task description ψ is defined with the BNF:

$$\psi ::= K_{\rho}\psi \mid \psi \land \psi \mid \psi \lor \psi \mid I_{\rho}$$

where a proof of I_p represents initial knowledge of p.

yes
$$(K_q K_p I_p) \lor K_p K_q I_q$$

no $(K_q K_p I_p) \land K_p K_q I_q$

Future Work

Extending program extraction to concurrent/distributed computation.

- Modelling other memory consistencies: especially PRAM consistency, cache consistency and processor consistency
- typed lambda calculus
 - For multi-core?
 - Type-safe Paxos [Lamport, 1997] implimentation
- Quantify agents $\exists x K_x \varphi$ for program extraction with mobility.
 - Knowledge of π -calculus terms?
- Knowledge of forking and merging agents

This work has been accepted to LPAR-16 held in Dakar, Senegal.

Gafni, E. and Koutsoupias, E. (1999).

Three-processor tasks are undecidable. SIAM Journal on Computing, 28(3):970–983.

Hintikka, J. (1962).

Knowledge and belief: an introduction to the logic of the two notions. Cornell University Press.

Lamport, L. (1997).

How to make a correct multiprocess program execute correctly on a multiprocessor. IEEE Transactions on Computers, 46(7):779–782.

Sato, M. (1977).

A study of Kripke-type models for some modal logics by Gentzen's sequential method. Publications of the research institute for mathematical sciences, 13:381.