Formal Verification for
Ethereum

Amsterdam, 3 May 2017
Yoichi Hiral

“formal” verification”

http://www.telegraph.co.uk/culture/tvandradio/10803323/Why-cant-we-make-drama-like-The-Pallisers-anymore.html

‘formal” comes from
formalised math

9 @ correct but
i1 boring
¥ BN

https://en.wikipedia.org/wiki/Emmy_Noether#/media/File:Noether.jpg

no idea

Usual Math

just
looking at
“form”

e

fOrma\ pDroofs on twitter
Vlessages Search Twitter a @ A

“—" IPC bot
s ipc_bot

.@pirapira Provable. (pw!

AANB— B:
Provable.
Proof tree (intuitionistic):

Use proof checkers
against lots of cases

Kepler's conjecture« «* % s the most compact’

=1

C—

one needs to see all other ways are less efficient

This involves checking lots of corner cases.

Flyspeck project (led by Thomas Hales) used
Isabelle and HOL-light

(That sounds useful for software development t00.)

Proving software correct

* using interactive proof assistants

CoQ

e they use only ~20 inference rules to derive the whele math

e ... and that code matches specification

Steps for Proving Ethereum
contracts correct

* Ethereum Virtual Machine for theorem provers

* Jestthe EVM In the provers against other
implementations

* Use the EVM for proving byte code correct against
specifications

Proving smart contracts
correct!

File Edit Search Markers =olcing \iew Utilities Macros Plugrs Hagp

[D22d.thy (~/src/2th4sabel efexample/)

apply(drule deed inv.cases; auto)
apply(drule star_case; auto)
apply(case_tac steps; auto)f
apply(split strict_if_split; auto)

applv(split strict if split: auto)
L

¥|Prao” state Auto LEcate Update | Search: |

proof (prove)
goal (7 subgoals):
= 1. Aa initial_call aa bal origin ext block act st bala opt_v nat.
account_code a = deed_program —
ucast (account_storage a 0) # callenv_caller initial call —
255 AND account _storage a 2 div 1461501637330902918203684832716283019655932542876 # 0 —
account_balance a < account_balance a + callenv_value initial_call —
- account_killed a —
star (one_round deed_inv)
(update_account_state a act st bala opt v, ProgramToWworld (act, st, bala, opt v))
(aa, ProgramAnnotationFailure) —
bal (account_address a) = account_balance a —
(case |strict_if (word_of_int (int (length (callenv_data initial_call))) # o))
(blockedInstructionContinue

Ml

IEJ]v] Outou: l GLEry [Sledgehammer [Symbols

The proof finishes somehow

v isabelle2015 - Deed.thy
MNs Cdit Searck Merkers [olding View Utilties Macros Pugins elg
F&@3dE & 8¢ X pB B CDIE B #% © |€

0 Dzed.thy (-/cre/etk isakelle/examoalaf]

apply(case_tac steps; auto)
apply(case_tac a; simp add: postcondition_pack_def add: deed_inv.simps)
done

x '] |] 1nutes

11'

¥] Proof s-ara auto upcate | Llipdate Searnn:

theorem
deed_only_registrar_can_spend:
pre_post conditions deed inv
(AMnit_state init call.
ucast (account storage init state 0) +# callenv_caller init call A
255 AND account_storage init state 2 div 2 ~ 160 # 0 A
account _balance init state < account balance init state + callenv_value init call »
— account_killed init_state)
(\Minit_state _ (post_state, uu_).
account_balance init_state < account_balance post_state A
— account_killed post_state ~
255 AND account_storage post_state 2 div 2 ~ 160 /£ 0 A
account_storage init_state 0 = account_storage post_state 0)

B [ey s ‘https://github.com/pirapira/eth-isabelle

1174,1 (35415/3564z2)

(i

https://github.com/pirapira/eth-isabelle

Did you prove the right thing”
* [The account should not do anything wrong.

The balance should not decrease unless an
authorised account tells so.

Did you prove the right thing”?
* [The account should not do anything wrong.

The balance should not decrease unless an
authorised account tells so.

A non-authorised account cannot authorise any
account.

't's not just about one
Ethereum contract...
Veritying Ethereum as a Whole

 Theorem (Sami Méakela):
No Ethereum transaction can increase the total
amount of Ether.

« Q. How can the total amount of Ether decrease?

Casper

What is Casper

e Ethereum’'s coming consensus mechanism.

o Several different Casper protocols
https://github.com/ethereum/research/tree/master/casper
https://github.com/ethereum/research/tree/master/
casper3
https://github.com/ethereum/research/tree/master/
casperé
Vlad’s Casper
Meredith’s Casper(s)

* Not easy to comprehend everything

https://github.com/ethereum/research/tree/master/casper
https://github.com/ethereum/research/tree/master/casper3
https://github.com/ethereum/research/tree/master/casper3
https://github.com/ethereum/research/tree/master/casper4
https://github.com/ethereum/research/tree/master/casper4

Consensus

* The whole thing is for avoiding forks
(or double-spends)

* PBFT (practical byzantine fault tolerance) has
“2/3 honest implies no fork”

* Jo make It cryptoeconomic, we need:
‘It a fork happens,1/3 of the deposits can be
forteited”

Proof-of-stake requires
blaming bad behaviours

‘It 2/3 are honest, everything stays good” is not
enough

‘It something goes bad, some participants can be
penalised” Is better

Alice: “| sent it”
Bob: “l didn’t receive It”

Blaming a single party iIs much better.

Slashing conditions

o if afork happens, some 1/3 should be blamed for
wolatmg slashing conditions

(signing contradicting “commit” messages /

signing “commit” messages without evidence /

signing “prepare” messages without evidence /

signing “commit” message between two “prepare”)

©'©'©'©

 many modes of failures because everyone can do
whatever

* theorem prover to check all failure modes

Whenever there Is a fork,
some slashing condition Is violatead

prepared —

... cssnee| PTEPATEC committed]

prepared

but the pictures help only as much.

theorem

lemma accountable-safety :

validator-sets-finite s —

v > 0 —

fork-with-commits s (h, v) (h1, v1) (h2, vV2) =

3 h' v
ancestor-descendant-with-chosen-validators s (h, v) (h', v’) A
one-third-of-fwd-or-rear-slashed s h’

(proof)

| INKS

@pirapira on Twitter
pirapira on GitHub

github.com/pirapira/eth-isabelle
Smart contract verification

github.com/pirapira/pos
Casper verification

yoichi@ethereum.org

http://github.com/pirapira/eth-isabelle
http://github.com/pirapira/pos

