
1/28

Specifying the Ethereum Virtual Machine for
Theorem Provers

Yoichi Hirai

Ethereum Foundation

Cambridge, Sep. 13, 2017
(FC 2017 + some updates)

2/28

Outline

Problem
Motivation
EVM as a Machine
Wanted Properties

Current Efforts
Writing Specification
Testing the Specification
Proving Ethereum Contracts Correct

Outlook

3/28

Outline

Problem
Motivation
EVM as a Machine
Wanted Properties

Current Efforts
Writing Specification
Testing the Specification
Proving Ethereum Contracts Correct

Outlook

4/28

Ethereum: Program Execution without Trusted Admin

“Server side” computation dictates the society now.
Computers have owners and administrators.

I Will my program be executed unmodified?
I Will my program be available?
I Will my data kept secure from unauthenticated

modification?

Ethereum currently uses a Bitcoin-like approach
1. to replicate programs and program states, and
2. to agree on execution traces.

Over 24,000 nodes1 are running a clone of the Ethereum
Virtual Machine (EVM).

1According to ethernodes.org.

ethernodes.org

5/28

Typical Ethereum Usage: Deposits & Announcements

Ethereum Name Service is a sealed second-price auction.
The price is locked while the name is held.
Roughly 168,000 ETH (≈ 42,000,000 GBP) locked
for 161,000 names.

Voting Protocol McCorry, Shahandashti and Hao [FC 2017]
implemented a voting protocol on Ethereum.
The protocol requires a public bulletin board; and
uses deposit to incentivize participants to perform
all steps.

Counterparty risks are now on programs (“smart contracts”).
At least you can read the code. Isn’t that enough?

6/28

The Famous Bug

“The DAO” (an investment club): funds moved out
unexpectedly.
17% of total existing ETH affected.
Many miners2 accepted a protocol change to remedy this
particular case; the network split.
The EVM didn’t have a problem; the program on top had.

EVM might be a Good Formalization Target, I Thought
I unstoppable app sounds crazy unless it’s proven correct
I easy machine (deterministic on all inputs)
I test cases for multiple implementations
I a short spec (33 pages).

2Miners run GPUs to produce valid blocks.

7/28

EVM turns out not too Big to Formalize

The EVM definition in Lem (an ML like specification language)
has 2,000 lines.
Most instructions are simply encoded as functions in Lem:

Yellow Paper (original spec):

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER EIP-150 REVISION (032ba84 - 2017-03-27) 23

Another useful function is “all but one 64th” function L defined as:

(226) L(n) ≡ n− bn/64c

H.2. Instruction Set. As previously specified in section 9, these definitions take place in the final context there. In
particular we assume O is the EVM state-progression function and define the terms pertaining to the next cycle’s state
(σ′,µ′) such that:

(227) O(σ,µ, A, I) ≡ (σ′,µ′, A′, I) with exceptions, as noted

Here given are the various exceptions to the state transition rules given in section 9 specified for each instruction,
together with the additional instruction-specific definitions of J and C. For each instruction, also specified is α, the
additional items placed on the stack and δ, the items removed from stack, as defined in section 9.

0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256 unless otherwise noted.

Value Mnemonic δ α Description

0x00 STOP 0 0 Halts execution.

0x01 ADD 2 1 Addition operation.
µ′s[0] ≡ µs[0] + µs[1]

0x02 MUL 2 1 Multiplication operation.
µ′s[0] ≡ µs[0]× µs[1]

0x03 SUB 2 1 Subtraction operation.
µ′s[0] ≡ µs[0]− µs[1]

0x04 DIV 2 1 Integer division operation.

µ′s[0] ≡
{

0 if µs[1] = 0

bµs[0]÷ µs[1]c otherwise

0x05 SDIV 2 1 Signed integer division operation (truncated).

µ′s[0] ≡

0 if µs[1] = 0

−2255 if µs[0] = −2255 ∧ µs[1] = −1

sgn(µs[0]÷ µs[1])b|µs[0]÷ µs[1]|c otherwise

Where all values are treated as two’s complement signed 256-bit integers.
Note the overflow semantic when −2255 is negated.

0x06 MOD 2 1 Modulo remainder operation.

µ′s[0] ≡
{

0 if µs[1] = 0

µs[0] mod µs[1] otherwise

0x07 SMOD 2 1 Signed modulo remainder operation.

µ′s[0] ≡
{

0 if µs[1] = 0

sgn(µs[0])(|µs[0]| mod |µs[1]|) otherwise

Where all values are treated as two’s complement signed 256-bit integers.

0x08 ADDMOD 3 1 Modulo addition operation.

µ′s[0] ≡
{

0 if µs[2] = 0

(µs[0] + µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject to the 2256 modulo.

0x09 MULMOD 3 1 Modulo multiplication operation.

µ′s[0] ≡
{

0 if µs[2] = 0

(µs[0]× µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject to the 2256 modulo.

0x0a EXP 2 1 Exponential operation.

µ′s[0] ≡ µs[0]µs[1]

0x0b SIGNEXTEND 2 1 Extend length of two’s complement signed integer.

∀i ∈ [0..255] : µ′s[0]i ≡
{
µs[1]t if i 6 t where t = 256− 8(µs[0] + 1)

µs[1]i otherwise

µs[x]i gives the ith bit (counting from zero) of µs[x]

Lem:

| Arith MOD -> stack_2_1_op v c
(fun a divisor -> (if divisor = 0 then 0 else

word256FromInteger ((uint a) mod (uint divisor))
))

8/28

Outline

Problem
Motivation
EVM as a Machine
Wanted Properties

Current Efforts
Writing Specification
Testing the Specification
Proving Ethereum Contracts Correct

Outlook

9/28

How EVM Works 1
Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 4@25996]

program
counter

0x60
0x08
0x60
0xff
0x55
...

[]

PUSH1
0x08

PUSH1
0xff

SSTORE

code

Exported from Pencil Thu Mar 30 2017 19:37:34 GMT+0200 (CEST) Page 1 of 1

10/28

How EVM Works 2
Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 4@25996]

program
counter

0x60
0x08
0x60
0xff
0x55
...

[0x08]

PUSH1
0x08

PUSH1
0xff

SSTORE

code

Exported from Pencil Thu Mar 30 2017 19:38:00 GMT+0200 (CEST) Page 1 of 1

11/28

How EVM Works 3
Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 4@25996]

program
counter

0x60
0x08
0x60
0xff
0x55
...

[0x08; 0xff]

PUSH1
0x08

PUSH1
0xff

SSTORE

code

Exported from Pencil Thu Mar 30 2017 19:40:01 GMT+0200 (CEST) Page 1 of 1

12/28

How EVM Works 4
Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 8@255, 4@25996]

program
counter

0x60
0x08
0x60
0xff
0x55
...

[]

PUSH1
0x08

PUSH1
0xff

SSTORE

code

Exported from Pencil Thu Mar 30 2017 19:39:11 GMT+0200 (CEST) Page 1 of 1

13/28

An Annoying Phenomenon Called Reentrancy
(Transaction’s View)

Untitled Page

Origin Account Contract A

Ether
byte seq

storage&balance are shared

program
counter

CALL
...

[...]

code

Contract B Contract A

CALL

...

...
program
counter

...

[]

code

Exported from Pencil Fri Mar 31 2017 22:41:55 GMT+0200 (CEST) Page 1 of 1

14/28

An Annoying Phenomenon Called Reentrancy
(Invocation’s View)

Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 8@255, 4@25996]

program
counter

CALL
...

[1]

...

storage [(can be very different)]

Exported from Pencil Fri Mar 31 2017 22:43:05 GMT+0200 (CEST) Page 1 of 1

15/28

Outline

Problem
Motivation
EVM as a Machine
Wanted Properties

Current Efforts
Writing Specification
Testing the Specification
Proving Ethereum Contracts Correct

Outlook

16/28

Properties Wanted about a Contract

Safety Properties
I only this kind of callers can alter storage
I only this kind of callers can decrease the balance3

I the invalid opcode 0xfd is never hit
(Some compilers encode safety properties using 0xfd)

Game Theoretic / Cryptographic Properties
“bidding honestly” should be a dominant strategy
if a contract implements a second-price sealed auction correctly.

3Anyone can add balance to any account /

17/28

Phases of EVM Modeling

Phase 1 single call—done
Phase 2 caller-callee interaction—in testing & debugging
Phase 3 follow the blockchain—not started

18/28

Phase 1: Take the Single Invocation’s View
Involves some artificial nondeterminism.Untitled Page

Origin Account Contract A

Ether
byte seq

storage [50@0, 8@255, 4@25996]

program
counter

CALL
...

[1]

...

storage [(can be very different)]

Exported from Pencil Fri Mar 31 2017 22:43:05 GMT+0200 (CEST) Page 1 of 1

19/28

Special Treatment of CALL

During CALL instruction, nested calls can enter our program.
Our black box treatment of CALL during phase 1

I by default, the storage and the balance change arbitrarily
during a CALL.

I optionally, you can impose an invariant of the contract,
which is assumed to be kept during a CALL
but you are supposed to prove the invariant.

20/28

Outline

Problem
Motivation
EVM as a Machine
Wanted Properties

Current Efforts
Writing Specification
Testing the Specification
Proving Ethereum Contracts Correct

Outlook

21/28

Lem

I a specification language
I translates into HOL4, Isabelle/HOL, OCaml (and Coq)

How I started using Lem
1. I started this project in 2015 in Coq.
2. I tried Isabelle/HOL and my proofs got shorter.
3. Sami Mäkelä saw this and started the Lem version.

22/28

Outline

Problem
Motivation
EVM as a Machine
Wanted Properties

Current Efforts
Writing Specification
Testing the Specification
Proving Ethereum Contracts Correct

Outlook

23/28

OCaml for Testing

I Lem to OCaml extraction
I OCaml code to parse test cases (simplest “VMTest” format)

I Luckily, EVM has test suites
I for implementations in Python, Go, Rust, C++, . . . need to

match exactly
I VM Test suite: 40,617 cases (24 cases skipped; they

involve multiple calls)

Need to run other formats.

24/28

Outline

Problem
Motivation
EVM as a Machine
Wanted Properties

Current Efforts
Writing Specification
Testing the Specification
Proving Ethereum Contracts Correct

Outlook

25/28

Isabelle/HOL for Proving

Lem to Isabelle/HOL translation seems to be working.

As an off-the-shelf symbolic executor
Keeping the input x , without making it concrete.
Just watching the states evolve after each instruction.
Soon we see one stack element
“¬ (the first four bytes of x == 0x44552211)”

Number & size of the cases explode.
One instruction takes 15 seconds for a realistic code.

Separation logic
Amani Sidney and Maksym Bortin ported a separation logic
library onto EVM.
Compositional reasoning.

26/28

Proving Theorems about Ethereum Programs in
Isabelle/HOL

With symbolic execution
One theorem about a program (501 instructions) says:

I If the caller’s address is not at the storage index 1, the call
cannot decrease the balance

I On the same condition, the call cannot change the storage

With separation logic
I deployed a proven wallet as a bounty program (since closed).

27/28

Way Ahead

Ongoing
I testing the formalization of a whole transaction, containing

transactions containing calls
I verified compiler for a simple language (by Sami Mäkelä)

Not started
I implementing the next protocol change
I common Ethereum contract method/argument encoding
I connect to test/main network

A Competitor
I KEVM by Grigore Rosu and his team: EVM definition in

K-framework, gets some tools “for free”.

28/28

Summary

I We defined EVM for proof assistants Isabelle/HOL, Coq
and HOL4

I The EVM definition is usable for proving Ethereum
contracts against a specification

I We found mistakes in the LATEX spec while writing and
testing our definition.

I Proof/tool/language/protocol developments in the proof
assistants welcome
https://github.com/pirapira/eth-isabelle
(Apache License ver. 2 except material from Lem)

https://github.com/pirapira/eth-isabelle

	Problem
	Motivation
	EVM as a Machine
	Wanted Properties

	Current Efforts
	Writing Specification
	Testing the Specification
	Proving Ethereum Contracts Correct

	Outlook

