Specifying the Ethereum Virtual Machine for
Theorem Provers

Yoichi Hirai
Ethereum Foundation

Cambridge, Sep. 13, 2017
(FC 2017 + some updates)

Outline

Problem
Motivation
EVM as a Machine
Wanted Properties

Current Efforts
Writing Specification
Testing the Specification
Proving Ethereum Contracts Correct

Outlook

Outline

Problem
Motivation

Ethereum: Program Execution without Trusted Admin

“Server side” computation dictates the society now.
Computers have owners and administrators.

» Will my program be executed unmodified?

» Will my program be available?

» Will my data kept secure from unauthenticated
modification?

Ethereum currently uses a Bitcoin-like approach
1. to replicate programs and program states, and
2. to agree on execution traces.

Over 24,000 nodes' are running a clone of the Ethereum
Virtual Machine (EVM).

"According to ethernodes. org.

ethernodes.org

Typical Ethereum Usage: Deposits & Announcements

Ethereum Name Service is a sealed second-price auction.
The price is locked while the name is held.
Roughly 168,000 ETH (=~ 42,000,000 GBP) locked
for 161,000 names.

Voting Protocol McCorry, Shahandashti and Hao [FC 2017]
implemented a voting protocol on Ethereum.
The protocol requires a public bulletin board; and
uses deposit to incentivize participants to perform
all steps.

Counterparty risks are now on programs (“smart contracts”).
At least you can read the code. Isn’t that enough?

The Famous Bug

“The DAQ” (an investment club): funds moved out
unexpectedly.

17% of total existing ETH affected.

Many miners? accepted a protocol change to remedy this
particular case; the network split.

The EVM didn’t have a problem; the program on top had.

EVM might be a Good Formalization Target, | Thought
unstoppable app sounds crazy unless it's proven correct
easy machine (deterministic on all inputs)

test cases for multiple implementations

a short spec (33 pages).

v

v

v

v

2Miners run GPUs to produce valid blocks.

EVM turns out not too Big to Formalize

The EVM definition in Lem (an ML like specification language)
has 2,000 lines.

Most instructions are simply encoded as functions in Lem:

Yellow Paper (original spec):

0x06 MOD 2 1 Modulo remainder operation.

. 0 if p 1] =0
psl0] = .
1. [0] mod p [1] otherwise

Lem:

| Arith MOD -> stack_2_1_op v cC
(fun a divisor -> (if divisor = 0 then 0 else
word256FromInteger ((uint a) mod (uint divisor))

))

Outline

Problem

EVM as a Machine

How EVM Works 1

Origin Account Contract A
: : storage [50@0, 4@25996]

; byte seq

i Ether ; code

: :| program

H H 3 0x60 [PUSH1
| counter | [ox08| ox08
| 0x60 | PUSH1
: Oxff Oox(ff

0x55 | SSTORE

How EVM Works 2

Origin Account Contract A
: : storage [50@0, 4@25996]
; byte seq
| Ether

code

: 0x60 | PUSH1
![program| [0x08| oxo8
: —{ 0x60 | PUSH1

counter Oxff oxff
i [0x08] 0x55 | SSTORE

How EVM Works 3

Origin Account Contract A
: : storage [50@0, 4@25996]
; byte seq
| Ether

code

0x60 | PUSH1
0x08 0x08
: 0x60 | PUSH1
i| program | | 0xff Oxif
! [0x55 | SSTORE
counter -

: [0x08; Oxff]

How EVM Works 4

Origin Account Contract A
: : storage [50@0, 8@255, 4@25996

; byte seq
. Ether code
: 0x60 | PUSHL
0x08 0x08
0x60 | PUSH1
: Oxff Oxff
: 0x55 | SSTORE
; program| —-

counter

0

An Annoying Phenomenon Called Reentrancy
(Transgction’s View)

storage&balance are sharedw
A

Origin Account Contract A Contract B Contract
' code ! i code
! byte seq : :
. Ether
()CALLﬂi
program program
{| counter | | x counter

IZn

An Annoying Phenomenon Called Reentrancy
(Invocgtion’s View)

Origin Account Contract A

; byte seq
Ether

storage [50@0, 8@255, 4@25996]

i| program _J%'
i| counter

[

storage [(can be very different) |

Outline

Problem

Wanted Properties

Properties Wanted about a Contract

Safety Properties
» only this kind of callers can alter storage
» only this kind of callers can decrease the balance®

» the invalid opcode 0xfd is never hit
(Some compilers encode safety properties using 0xfd)

Game Theoretic / Cryptographic Properties
“pbidding honestly” should be a dominant strategy
if a contract implements a second-price sealed auction correctly.

3Anyone can add balance to any account ®

Phases of EVM Modeling

Phase 1 single call—done
Phase 2 caller-callee interaction—in testing & debugging
Phase 3 follow the blockchain—not started

Phase 1: Take the Single Invocation’s View

Involves some artificial nondeterminism.

Origin Account Contract A

; byte seq
i Ether

storage [50@0, 8@255, 4@25996]

[program | [CALL]
: b
i|_counter

]

storage [(can be very different)]

Special Treatment of CALL

During CALL instruction, nested calls can enter our program.
Our black box treatment of CALL during phase 1
» by default, the storage and the balance change arbitrarily
during a CALL.
» optionally, you can impose an invariant of the contract,
which is assumed to be kept during a CALL
but you are supposed to prove the invariant.

Outline

Current Efforts
Writing Specification

Lem

» a specification language
» translates into HOL4, Isabelle/HOL, OCaml (and Coq)

How | started using Lem
1. | started this project in 2015 in Coq.
2. | tried Isabelle/HOL and my proofs got shorter.
3. Sami Mé&kel& saw this and started the Lem version.

Outline

Current Efforts

Testing the Specification

OCaml for Testing

Lem to OCaml extraction
OCaml code to parse test cases (simplest “VMTest” format)

v

v

v

Luckily, EVM has test suites

» for implementations in Python, Go, Rust, C+, ...need to
match exactly

v

VM Test suite: 40,617 cases (24 cases skipped; they
involve multiple calls)

Need to run other formats.

Outline

Current Efforts

Proving Ethereum Contracts Correct

Isabelle/HOL for Proving
Lem to Isabelle/HOL translation seems to be working.

As an off-the-shelf symbolic executor

Keeping the input x, without making it concrete.

Just watching the states evolve after each instruction.
Soon we see one stack element

“= (the first four bytes of x == 0x44552211)”

Number & size of the cases explode.
One instruction takes 15 seconds for a realistic code.

Separation logic

Amani Sidney and Maksym Bortin ported a separation logic
library onto EVM.

Compositional reasoning.

Proving Theorems about Ethereum Programs in
Isabelle/HOL

With symbolic execution
One theorem about a program (501 instructions) says:

» If the caller’s address is not at the storage index 1, the call
cannot decrease the balance

» On the same condition, the call cannot change the storage

With separation logic
| deployed a proven wallet as a bounty program (since closed).

Way Ahead

Ongoing
» testing the formalization of a whole transaction, containing
transactions containing calls

» verified compiler for a simple language (by Sami Makela)

Not started
» implementing the next protocol change
» common Ethereum contract method/argument encoding
» connect to test/main network

A Competitor

» KEVM by Grigore Rosu and his team: EVM definition in
K-framework, gets some tools “for free”.

Summary

» We defined EVM for proof assistants Isabelle/HOL, Coq
and HOL4

» The EVM definition is usable for proving Ethereum
contracts against a specification

» We found mistakes in the IATEX spec while writing and
testing our definition.

» Proof/tool/language/protocol developments in the proof
assistants welcome
https://github.com/pirapira/eth-isabelle
(Apache License ver. 2 except material from Lem)

https://github.com/pirapira/eth-isabelle

	Problem
	Motivation
	EVM as a Machine
	Wanted Properties

	Current Efforts
	Writing Specification
	Testing the Specification
	Proving Ethereum Contracts Correct

	Outlook

