
[PPL2009]

非同期プログラム抽出器
非決定性も利用可
バグが無く
高速である
並列ソフト

多くの既存手法
separation logic
fractional type
線形λ計算
FastTrack
Goldilocks
非決定性を排除

知識中間論理のKripkeモデルと
共有メモリの実行を比較

修士論文・研究科長賞
[LPAR-16 (LNAI 6355, Springer)]

[FoSSaCS 2011 投稿済]

Kripkeモデルの全順序性

非同期知識様相を加えて
1.
2.
3.

 1.sequential consistency
2. cache consistency
3. processor consistency
共有メモリの整合性
＝実行の全順序性
[Steinke, 2004]

受付番号6978 平井洋一
非同期通信するプログラムを形式的証明から抽出してバグを防ぐ研究

直観主義論理
構成主義
Brouwer-Heyting-
Kolmogorov解釈
Kripkeモデル
persistency

マルチコア時代の非同期プログラム抽出既存プログラム抽出

型付λ計算

 型理論
証明=プログラム
プログラム抽出
Coq, NuPrl, ...
[平井,山本 投稿済JFP]

非同期通信用の直観主義知識論理
[NASSLLI 2010 student session]

有限モデル性

論
理

計
算

応
用

共有メモリ付λ計算
[Baaz,03]の演繹体系を利用
さらに部分的な同期の導入

Curry-Howard同型

高階化

Curry-Howard同型

萩
谷
研

対応を発見

中間論理

共有メモリ型
分散計算

(ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ)

Proof assistants: History, ideas and future 9

mathematics can be expressed accurately, in the sense that linguistic correctness implies
mathematical correctness. This language should be computer checkable and it should be help-
ful in improving the reliability of mathematical results. Several Automath system have been
implemented and used to formalize mathematics. We will discuss some crucial aspects of the
systems that had an influence on other systems.

2.1a Proofs as objects, formulas as types: In the Automath systems the idea of treating
proofs as first class objects in a formal language, at the same footing as other terms, occurs
for the first time. In logic, this idea is known as the Curry–Howard formulas-as-types iso-
morphism, for the first time written up in 1968 by Howard (Howard 1980), going back to
ideas of Curry who had noticed that the types of the combinators are exactly the axioms
of Hilbert style deduction. De Bruijn reinvented the idea, emphasizing the proofs-as-objects
aspect, which comes down to the following: There is an isomorphism T between formulas
and the types of their proofs giving rise to

! !logic ϕ if and only if ! !type theory M : T (ϕ),

where M is a direct encoding (as a λ-term) of the deduction of ϕ from !. In logic, ! just
contains the assumptions, but in type theory, ! also contains the declarations x : A of the
free variables occurring in the formulas. The formulas-as-types correspondence goes even
further: assumptions in ! are of the form y : T (ψ) (we assume a hypothetical ‘proof’ y of
ψ) and proven lemmas are definitions recorded in ! as y := p : T (ψ) (y is a name for the
proof p of ψ).

An interesting consequence of this analogy is that ‘proof checking = type checking’. So,
a type checking algorithm suffices to satisfy the De Bruin criterion of the previous section.
Depending on the type theory, this can be more or less difficult. The original Automath
systems had a small kernel, so for those it is rather simple. Later developments based on
the same idea are the systems LF (Harper et al 1993, Twelf (Twelf), Lego (Luo & Pollack
1992), Alf (Magnusson & Nordström 1994), Agda (Agda), NuPrl (Constable et al 1986) and
Coq (Coq), which have increasingly complicated underlying formal systems and therefore
increasingly complicated kernels and type checking algorithms. (NuPrl is based on a type
theory with undecidable type checking, so a λ-term is stored with additional information to
guide the type checking algorithm.)

It should be noted that the original Automath systems were just proof checkers: the user
would type the proof term and the system would type check it. The other systems mentioned
are proof assistants: the user types tactics that guide the proof engine to interactively construct
a proof-term. This proof-term is often not explicitly made visible to the user, but it is the
underlying ‘proof’ that is type-checked. This is made precise in figure 1.

Goals

OK

Tactics

User

Proof object

Proof Checker

Engine
Proof

Figure 1. Proof development in a type theory based proof assistant.

Proof assistants: History, ideas and future 9

mathematics can be expressed accurately, in the sense that linguistic correctness implies
mathematical correctness. This language should be computer checkable and it should be help-
ful in improving the reliability of mathematical results. Several Automath system have been
implemented and used to formalize mathematics. We will discuss some crucial aspects of the
systems that had an influence on other systems.

2.1a Proofs as objects, formulas as types: In the Automath systems the idea of treating
proofs as first class objects in a formal language, at the same footing as other terms, occurs
for the first time. In logic, this idea is known as the Curry–Howard formulas-as-types iso-
morphism, for the first time written up in 1968 by Howard (Howard 1980), going back to
ideas of Curry who had noticed that the types of the combinators are exactly the axioms
of Hilbert style deduction. De Bruijn reinvented the idea, emphasizing the proofs-as-objects
aspect, which comes down to the following: There is an isomorphism T between formulas
and the types of their proofs giving rise to

! !logic ϕ if and only if ! !type theory M : T (ϕ),

where M is a direct encoding (as a λ-term) of the deduction of ϕ from !. In logic, ! just
contains the assumptions, but in type theory, ! also contains the declarations x : A of the
free variables occurring in the formulas. The formulas-as-types correspondence goes even
further: assumptions in ! are of the form y : T (ψ) (we assume a hypothetical ‘proof’ y of
ψ) and proven lemmas are definitions recorded in ! as y := p : T (ψ) (y is a name for the
proof p of ψ).

An interesting consequence of this analogy is that ‘proof checking = type checking’. So,
a type checking algorithm suffices to satisfy the De Bruin criterion of the previous section.
Depending on the type theory, this can be more or less difficult. The original Automath
systems had a small kernel, so for those it is rather simple. Later developments based on
the same idea are the systems LF (Harper et al 1993, Twelf (Twelf), Lego (Luo & Pollack
1992), Alf (Magnusson & Nordström 1994), Agda (Agda), NuPrl (Constable et al 1986) and
Coq (Coq), which have increasingly complicated underlying formal systems and therefore
increasingly complicated kernels and type checking algorithms. (NuPrl is based on a type
theory with undecidable type checking, so a λ-term is stored with additional information to
guide the type checking algorithm.)

It should be noted that the original Automath systems were just proof checkers: the user
would type the proof term and the system would type check it. The other systems mentioned
are proof assistants: the user types tactics that guide the proof engine to interactively construct
a proof-term. This proof-term is often not explicitly made visible to the user, but it is the
underlying ‘proof’ that is type-checked. This is made precise in figure 1.

Goals

OK

Tactics

User

Proof object

Proof Checker

Engine
Proof

Figure 1. Proof development in a type theory based proof assistant.

非決定性

非決定性

(Kxϕ ⊃ Kyψ) ∨ (Kyψ ⊃ Kxϕ)

(Kxϕ ⊃ Kxψ) ∨ (Kxψ ⊃ Kxϕ)

(KaKxϕ ⊃ KaKyψ) ∨ (KaKyψ ⊃ KaKxϕ)

