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mathematics can be expressed accurately, in the sense that linguistic correctness implies
mathematical correctness. This language should be computer checkable and it should be help-
ful in improving the reliability of mathematical results. Several Automath system have been
implemented and used to formalize mathematics. We will discuss some crucial aspects of the
systems that had an influence on other systems.

2.1a Proofs as objects, formulas as types: In the Automath systems the idea of treating
proofs as first class objects in a formal language, at the same footing as other terms, occurs
for the first time. In logic, this idea is known as the Curry–Howard formulas-as-types iso-
morphism, for the first time written up in 1968 by Howard (Howard 1980), going back to
ideas of Curry who had noticed that the types of the combinators are exactly the axioms
of Hilbert style deduction. De Bruijn reinvented the idea, emphasizing the proofs-as-objects
aspect, which comes down to the following: There is an isomorphism T between formulas
and the types of their proofs giving rise to

! !logic ϕ if and only if ! !type theory M : T (ϕ),

where M is a direct encoding (as a λ-term) of the deduction of ϕ from !. In logic, ! just
contains the assumptions, but in type theory, ! also contains the declarations x : A of the
free variables occurring in the formulas. The formulas-as-types correspondence goes even
further: assumptions in ! are of the form y : T (ψ) (we assume a hypothetical ‘proof’ y of
ψ) and proven lemmas are definitions recorded in ! as y := p : T (ψ) (y is a name for the
proof p of ψ).

An interesting consequence of this analogy is that ‘proof checking = type checking’. So,
a type checking algorithm suffices to satisfy the De Bruin criterion of the previous section.
Depending on the type theory, this can be more or less difficult. The original Automath
systems had a small kernel, so for those it is rather simple. Later developments based on
the same idea are the systems LF (Harper et al 1993, Twelf (Twelf), Lego (Luo & Pollack
1992), Alf (Magnusson & Nordström 1994), Agda (Agda), NuPrl (Constable et al 1986) and
Coq (Coq), which have increasingly complicated underlying formal systems and therefore
increasingly complicated kernels and type checking algorithms. (NuPrl is based on a type
theory with undecidable type checking, so a λ-term is stored with additional information to
guide the type checking algorithm.)

It should be noted that the original Automath systems were just proof checkers: the user
would type the proof term and the system would type check it. The other systems mentioned
are proof assistants: the user types tactics that guide the proof engine to interactively construct
a proof-term. This proof-term is often not explicitly made visible to the user, but it is the
underlying ‘proof’ that is type-checked. This is made precise in figure 1.
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Figure 1. Proof development in a type theory based proof assistant.
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