
A Lambda Calculus for Gödel–Dummett Logic

Capturing Waitfreedom

Yoichi Hirai

Univ. of Tokyo, JSPS research fellow

2012-05-23, FLOPS 2012, Kobe

1

Curry–Howard Correspondence

Logic Computation

Intuitionistic propositional logic
Simply-typed λ
each term has a unique normal form

+ (φ→ ψ) ∨ (ψ → φ)
= Gödel–Dummett Logic

λ-GD
Normal form not unique in general:
utilize as distributed computation

+ φ ∨ ¬φ
= Classical propositional logic

many calculi
Normal form not unique in general:
fight with evaluation strategy

This correspondence is based on

Brouwer–Heyting–Kolmogorov interpretation

2

Brouwer–Heyting–Kolmogorov Interpretation

explains logical connectives in intuitionistic logic

A proof of P ∧ Q is a pair ⟨x, y⟩
where x is a proof of P and y is a proof of Q

A proof of P ∨ Q is a pair ⟨i, x⟩
where i = 0 and x is a proof of P, or i = 1 and x is a proof of Q

A proof of P→ Q is a construction which permits us to

transform any proof of P into a proof of Q.

P↓

Q↑

3

Computational Interpretation of Implication O→ O

O↓

O↑

4

Computational Interpretation of Implication O→ O

O↓

O↑

5

Computational Interpretation of Implication O→ O

O↓

O↑

6

Computational Interpretation of Implication O→ O

O↓ O↑

7

Computational Interpretation of Implication O→ O

O↓

O↑

8

Computational Interpretation of Dummett Axiom

(O→ A) ∨ (A→ O) . . . ?

Gödel–Dummett logic has Dummett Axiom (φ→ ψ) ∨ (ψ → φ),
which must be realized for any φ and ψ.

O↓

A↑

or A↓

O↑

9

Computational Interpretation of Dummett Axiom

(O→ A) ∨ (A→ O)

O↓

A↑
or A↓

O↑

10

Computational Interpretation of Dummett Axiom

(O→ A) ∨ (A→ O)

O↓

A↑
or A↓

O↑

11

Computational Interpretation of Dummett Axiom

(O→ A) ∨ (A→ O)

O↓

A↑
or A↓

O↑

12

Computational Interpretation of Dummett Axiom

(O→ A) ∨ (A→ O)

O↓

A↑

or A↓

O↑

13

Computational Interpretation of Dummett Axiom

(O→ A) ∨ (A→ O)

O↓

A↑

or A↓

O↑

14

Computational Interpretation of Dummett Axiom

(O→ A) ∨ (A→ O)

O↓

A↑

or A↓

O↑

15

Computational Interpretation of Dummett Axiom

(O→ A) ∨ (A→ O)

O↓

A↑

or A↓

O↑

16

Computational Interpretation of Dummett Axiom

(O→ A) ∨ (A→ O)

O↓

A↑
or A↓

O↑

17

(O→ A) ∧ (A→ O) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

O↓

A↑
and A↓

O↑

18

(O→ A) ∧ (A→ O) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

O↓

A↑
and A↓

O↑

waiting...

19

(O→ A) ∧ (A→ O) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

O↓

A↑
and A↓

O↑

20

(O→ A) ∧ (A→ O) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

O↓

A↑
and A↓

O↑

21

(O→ A) ∧ (A→ O) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

O↓

A↑

and A↓

O↑

22

Waitfree = “impossible to wait for other processes”

(free as in tax-free and alcohol-free)

A task can be waitfreely solvable or not.

A task ⊆ IP × OP where P is processes, I is inputs and O is outputs

A watifreely unsolvable task: {((x, y), (y, x)) | x, y ∈ {0, 1}}

A waitfreely solvable task:
{((x, y), (x, x + y)), ((x, y), (x + y, y)), ((x, y), (x + y, x + y)) |
x, y ∈ {0, 1}}

The definition of waitfreedom is long: involving a virtual machine

Saks and Zaharoglou (2000)

23

Main Theorem

A task is

waitfreely solvable
⇐⇒
solvable by a typable λ-GD-term

For a typed lambda calculus λ-GDfor Gödel–Dummett logic.

24

Formulas, Sequents, Hypersequents

Local Types

φ ::= ⊥ | P | φ→ φ | φ ∧ φ | φ ∨ φ

Global Types

φ+ ::= [i]φ | φ+ ∧ φ+ | φ+ ∨ φ+

where i is a process

Sequent

S ::= Γ ⊢ φ+ whereΓ is a finite set of global formulas

Hypersequent

H ::= S | (S H)

25

Hyper-Natural Deduction (Based on Avron’s Hypersequents)

External Rules

H Γ,∆ ⊢ [i]φ H Γ,∆ ⊢ [j]ψ
com’

H Γ ⊢ [i]ψ ∆ ⊢ [j]φ
and structural rules

Inner Global Rules

H Γ ⊢ φ+ ∧ ψ+

∧E0
H Γ ⊢ φ+

H Γ ⊢ φ+ ∧ ψ+

∧E1
H Γ ⊢ ψ+

and ∧I,∨E,∨I

Inner Local Rules

[i]Ax
[i]φ, Γ ⊢ [i]φ

H [i]φ, Γ ⊢ [i]ψ
[i]→ I

H Γ ⊢ [i](φ→ ψ)

H Γ ⊢ [i](φ→ ψ) H Γ ⊢ [i]φ
[i]→ E

H Γ ⊢ [i]ψ

and ⊥E,∧E,∧I,∨E,∨I
26

Example Derivation of [0](O→ A) ∨ [1](A→ O)

[0]O, [1]A ⊢ [0]O [0]O, [1]A ⊢ [1]A
com’

[0]O ⊢ [0]A [1]A ⊢ [1]O
[i]→ I

⊢ [0](O→ A) ⊢ [1](A→ O)
[i] ∨ I

⊢ [0](O→ A) ∨ [1](A→ O) ⊢ [0](O→ A) ∨ [1](A→ O)
EC ⊢ [0](O→ A) ∨ [1](A→ O)

The conclusion

as a type, represents the orange–apple protocol

as a formula, without modalities [i], is the Dummett axiom.

27

Typing Terms

External Rules

G0 Γ,∆ ▷ M: [i]φ G1 Γ,∆ ▷ N: [j]ψ

[G0,G1] Γ ▷
−→
ℓi∆ (M): [i]ψ ∆ ▷

←−
ℓjΓ (N) : [j]φ

Inner Global Rules

G Γ ▷ M: φ+ ∧ ψ+

G Γ ▷ πg
l (M): φ+

G Γ ▷ M: φ+ ∧ ψ+

G Γ ▷ πg
r (M): ψ+

Inner Local Rules

x : [i]φ, Γ ▷ x : [i]φ
G x : [i]φ, Γ ▷ M: [i]ψ

G Γ ▷ λx.M: [i](φ→ ψ)

G0 Γ ▷ M: [i](φ→ ψ) G1 Γ ▷ N: [i]φ

[G0,G1] Γ ▷ MN: [i]ψ

where G0 and G1 has the same types.

28

Example Typed Term

x : [0]O, y : [1]A ▷ x : [0]O x: [0]O, y : [1]A ▷ y : [1]A

x : [0]O ▷ −→ℓ (x) : [0]A y : [1]A ▷←−ℓ (y) : [1]O

x: [0]O, y : [1]A ▷ −→ℓ (x) : [0]A x : [0]O, y : [1]A ▷←−ℓ (y) : [1]O

x : [0]O, y : [1]A ▷ inlg
(−→
ℓ (x)

)
: φ x : [0]O, y : [1]A ▷ inrg

(←−
ℓ (y)

)
: φ

x : [0]O, y : [1]A ▷ [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
] : (φ :=)[0]A ∨ [1]O

29

Example Reduction 1

From the previously typed term:

write reduction

({ }, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

30

Example Reduction 1

From the previously typed term:

read reduction

({ }, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg (abort) , inrg
(←−
ℓ (y)

)
])

31

Example Reduction 1

From the previously typed term:

write reduction

({ }, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg (abort) , inrg
(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (abort) , inrg
(←−
ℓ (y)

)
])

32

Example Reduction 1

From the previously typed term:

read reduction

({ }, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg (abort) , inrg
(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (abort) , inrg
(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (abort) , inrg (x)])

33

Example Reduction 1

From the previously typed term:

abort propagation

({ }, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg (abort) , inrg
(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (abort) , inrg
(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (abort) , inrg (x)])
⇝({ℓ 7→ x}, {ℓ 7→ y}, [abort , inrg (x)])

34

Example Reduction 1

From the previously typed term:

abort propagation

({ }, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg (abort) , inrg
(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (abort) , inrg
(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (abort) , inrg (x)])
⇝({ℓ 7→ x}, {ℓ 7→ y}, [abort , inrg (x)])
⇝({ℓ 7→ x}, {ℓ 7→ y}, inrg (x))

35

Example Reduction 2

From the same term:

({ }, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ }, {ℓ 7→ y}, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ }, {ℓ 7→ y}, [inlg
(−→
ℓ (x)

)
, inrg (abort)])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg
(−→
ℓ (x)

)
, inrg (abort)])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (y) , inrg (abort)])
⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (y) , abort])
⇝({ℓ 7→ x}, {ℓ 7→ y}, inlg (y))

36

Example Reduction 3

Still from the same term:

({ }, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, { }, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg
(−→
ℓ (x)

)
, inrg

(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (y) , inrg
(←−
ℓ (y)

)
])

⇝({ℓ 7→ x}, {ℓ 7→ y}, [inlg (y) , inrg (x)])

37

Results

Strong normalization No typed term can reduce infinitely often

Non-abortfullness No typed term can reduce into abort

Waitfree characterization

A task is waitfreely solvable⇔ solvable by a typed term

38

History

Lamport (1977) introduced what is now called waitfree computing

Avron (1991) introduced a hypersequent calculus for Gödel–Dummett

logic and showed cut-elimination

Gafni and Koutsoupias (1999)

showed that it is undecidable whether a task can be

solved waitfreely

Herlihy and Shavit (1999), Saks and Zaharoglou (2000)

gave a topological characterization of waitfree

computation (Gödel Prize 2004)

I found waitfreedom when I was looking at past Gödel Prizes

39

Avron’s Question and My Answer

Avron (1991): it seems to us extremely important to determine the

exact computational content of [the intermediate logics with

cut-elimination for hypersequents] — and to develop corresponding

“λ-calculi.”

I answer:

The computational content of Gödel–Dummett logic is

waitfreedom

λ-GD is the λ-calculus for it

Fermüller (2003) gave a natural deduction but not reductions

Future Work:

generalizing to more logics and investigating classical logic

adapting to weaker shared memory consistency

40

