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Curry—Howard Correspondence

Logic Computation
Simply-typed X\
Intuitionistic propositional logic | each term has a unique normal form

A-GD
+ (= YV)V (Y — ) Normal form not unique in general:
= Godel-Dummett Logic utilize as distributed computation
many calculi

+ Ve Normal form not unique in general:
= Classical propositional logic | fight with evaluation strategy

This correspondence is based on
Brouwer—Heyting—Kolmogorov interpretation



Brouwer—Heyting—Kolmogorov Interpretation

explains logical connectives in intuitionistic logic
m A proof of P A Q is a pair (x,y)
where x is a proof of P and y is a proof of Q

m A proof of P vV Q is a pair (i, x)
where i = 0 and x is a proof of P, or i = 1 and x is a proof of Q

m A proof of P — Q is a construction which permits us to
transform any proof of P into a proof of Q.
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Computational Interpretation of Implication O — O
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Computational Interpretation of Dummett Axiom

(0= A)V(A—0)...7

Godel-Dummett logic has Dummett Axiom (¢ — v¥) V (¥ — @),
which must be realized for any ¢ and .
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Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)
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Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)
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(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable
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(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable
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(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable
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(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable
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(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable
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Waitfree = “impossible to wait for other processes”

(free as in tax-free and alcohol-free)
A task can be waitfreely solvable or not.

A task C I” x O" where P is processes, | is inputs and O is outputs
A watifreely unsolvable task: {((x,y), (y,x)) | x,y € {0,1}}

A waitfreely solvable task:

{((x¥), (5, x +¥))s ((x, )5 (x + ¥, ¥)), ((x,¥), (x + y,x +y)) |
X,y € {0? 1}}

The definition of waitfreedom is long: involving a virtual machine
Saks and Zaharoglou (2000)
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A task is

waitfreely solvable

e
solvable by a typable A\-GD-term

For a typed lambda calculus A-GDfor Godel-Dummett logic.

24



Formulas, Sequents, Hypersequents

Local Types
pu=L|Plo—opleNpleVe

Global Types
ptu=lilp | et At | ot Vet

where i is a process

Sequent
S =T F 1 wherer is a finite set of global formulas

Hypersequent
Hu=S|(S | #)
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Hyper-Natural Deduction (Based on Avron’s Hypersequents)

External Rules
HIrar[le HInAF[[
# ey | are

Inner Global Rules
H|reept Ayt

H I M-t
and ANZ,VE, VT

and structural rules

com

H|TEEtApt

NEy
H |-yt

NE1

Inner Local Rules

[Ax——— : #H | [ile, T+ [y
[ile, T+ [i]le [l —=Z HTE (e — )
[i]_)g’?-tlrl—[i](cp—)d)) # | reije

# | iy
and LE,ANE, AT, VE, VT
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Example Derivation of [0](O — A) V [1](A — O)

, [0]0,[1]A-[0]0  [0]O,[1]A I [1]A
om [0]0 I [0]A | [1]A + [1]0
- [0](0 —» A) | +[1)(A = 0)

F [0](O — A) Vv [1](A — O) | F [0](O — A) Vv [1](A — 0O)
+ [0](O — A) Vv [1](A — O)

[il —

ilvzT
EC

The conclusion
m as a type, represents the orange—apple protocol
m as a formula, without modalities [i], is the Dummett axiom.
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Typing Terms

External Rules

Glracm:file G lracn:Jjw

— e .

[Go,G1] | T 6y (M): il | A £ (N): [ile
Inner Global Rules

G|l rom: et Ayt G|l rom: et Ayt
G| resatMm): ot G| reaemy: ¢t
Inner Local Rules

G | x: [ilg, T > M: [i]y
G | ro axM: [ij(¢ — )
Golresm:[ij(¢ >v) G |renN:Jie

[Go,G1] | T > MN: [i]y

where Gg and G; has the same types.

x: [i]e, I > x: [i]e
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Example Typed Term

x: [0]O,y: [1]A > x: [0]O x: [0]O,y: [1]A > y: [1]A
x: [0]0 > € (x): [0]A | y: [1A &> 2 (y): [1]0
x: [0]0,y: [1JA & € (x): [0]A | x: [0]0,y: [1]A > 7 (y): [1]O
x: [0]0,y: [1JA & inf (7 (x)): ¢ | x: [0]0,y: [1]A & ine¥ (7 (v)):

x: [0]0,y: [1]A & [inl® (7 (x)) , inre (7 ))1: (¢ :=)[0]A v [1]0
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Example Reduction 1

From the previously typed term:
write reduction

GO S N T
({0 x} { }, [in® (

7 (x)) ,inré (
4 (x)) ,inrg
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Example Reduction 1

From the previously typed term:
read reduction

€ h{ LlinE (7 )i (T ()]
w({emxh{ Ll (7 (x)inek (T (v))])
~({€ — x}, { }, [inl® (abort ) , inr® (7 (y))])
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Example Reduction 1

From the previously typed term:
write reduction

€ hi{ hinE(7 (), (7 )
w({e bl plinE (7 () ines (T ()
(e x}, { 1, [inl® (abort ) , inr® ( ]

«({£ = x}, {€ — y}, [inl¥ (abort ) ,in# (
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Example Reduction 1

From the previously typed term:
read reduction

€ B hEE(7 (). ine
“({e=xh{ B (7 () inr
(> x}, { 1, [inl® (abort ) , inr® (

({2 = x}, {£ > y}, [ink® (abort ) ,inr® (7 (y))])
~({€ — x}, {€ — y}, [inl® (abort) , inr® (x)])
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Example Reduction 1

From the previously typed term:
abort propagation

€ B hlneE(Z )i (7 @)
(e xh{ LlinE (7 ()i (T (1))
w({e=x},{  },[inl®(abort) ,inrE (7 W)1)
~({€ — x}, {£ — y}, [inl® (abort ) , inr® ( 14 (Y)>])

~({€ — x}, {€ — y},[inl® (abort) , inr® (x)])
~({€ — x}, {€ — y}, [abort ,inr® (x)])

34



Example Reduction 1

From the previously typed term:
abort propagation

€ B hlneE(Z )i (7 @)
w({e=oh Ll (7 ()i (T ()))
w({e=x},{  },[inl®(abort) ,inrE (7 W)1)
~({€ — x}, {£ — y}, [inl® (abort ) , inr® ( 14 (Y)>])
~({€ > x}, {€ > y}, [inl® (abort ) , inr¥ (x)])

({5 x}, {£ = v} [abort  ine® (x)])
~({€ = x}, {€— y},inrf (x))
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Example Reduction 2

From the same term:

€ h{ hOnE (7). (2 ()
~({ hAem yh(inE (7 (x) ines (T (v))])
- 3, {€ — y},[inl® (7 (x)) , inr€ (abort )])

(€ x}, {£ = y}, [in (7 (x)) ,ine# (abort )])
~({£ = x}, {€ =y}, [in® (y) , inr® (abort )])
~({£ = x}, {€ =y}, [in® (y) ; abort ])

~({€ = x}, {€— y},inl® (y))
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Example Reduction 3

Still from the same term:

€ h{ hOnE (7). (T ())
w({€ = x}, { }, [inl® (7 (x)) ,ine® (7 ™))
w({€ = x}, {£ — y}, [inl® (7 (x)) ,ine® (‘_ ™)1

4
w({€ > xb (L v} [ink (y) inet (€ (3))])
w({ > x}, {£ — v}, [ink® (y) , ine® (x)])
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Strong normalization No typed term can reduce infinitely often
Non-abortfullness No typed term can reduce into abort

Waitfree characterization
A task is waitfreely solvable < solvable by a typed term
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Lamport (1977) introduced what is now called waitfree computing
Avron (1991) introduced a hypersequent calculus for Godel-Dummett
logic and showed cut-elimination

Gafni and Koutsoupias (1999)
showed that it is undecidable whether a task can be
solved waitfreely

Herlihy and Shavit (1999), Saks and Zaharoglou (2000)
gave a topological characterization of waitfree
computation (Godel Prize 2004)

| found waitfreedom when | was looking at past Godel Prizes
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Avron’s Question and My Answer

Avron (1991): it seems to us extremely important to determine the
exact computational content of [the intermediate logics with
cut-elimination for hypersequents] — and to develop corresponding
“A-calculi.”

| answer:

m The computational content of Godel-Dummett logic is
waitfreedom

m A\-GD is the A-calculus for it
Fermiiller (2003) gave a natural deduction but not reductions

Future Work:

m generalizing to more logics and investigating classical logic
m adapting to weaker shared memory consistency
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