A Lambda Calculus for Godel-Dummett Logic

Capturing Waitfreedom

Yoichi Hirai
Univ. of Tokyo, JSPS research fellow

2012-05-23, FLOPS 2012, Kobe

Curry—Howard Correspondence

Logic Computation
Simply-typed X\
Intuitionistic propositional logic | each term has a unique normal form

A-GD
+ (= YV)V (Y —) Normal form not unique in general:
= Godel-Dummett Logic utilize as distributed computation
many calculi

+ Ve Normal form not unique in general:
= Classical propositional logic | fight with evaluation strategy

This correspondence is based on
Brouwer—Heyting—Kolmogorov interpretation

Brouwer—Heyting—Kolmogorov Interpretation

explains logical connectives in intuitionistic logic
m A proof of P A Q is a pair (x,y)
where x is a proof of P and y is a proof of Q

m A proof of P vV Q is a pair (i, x)
where i = 0 and x is a proof of P, or i = 1 and x is a proof of Q

m A proof of P — Q is a construction which permits us to
transform any proof of P into a proof of Q.

Pl

Qt
—

Computational Interpretation of Implication O — O

Computational Interpretation of Implication O — O

Computational Interpretation of Implication O — O

Computational Interpretation of Implication O — O

Computational Interpretation of Implication O — O

Computational Interpretation of Dummett Axiom

(0= A)V(A—0)...7

Godel-Dummett logic has Dummett Axiom (¢ — v¥) V (¥ — @),
which must be realized for any ¢ and .

Ol

T— A7l

= — |
or Al

o1
— — |

Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)

10

Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)

1

Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)

12

Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)

13

Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)

14

Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)

15

Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)

16

Computational Interpretation of Dummett Axiom
(O—A)V(A—O0)

17

(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

oL
— <=
AT
and Al

18

(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable
Ol waiting...
£ S r——
AT
and | Al

0 e
—

19

(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

2L

T R LT
£ S—
AT
and Al
01
—

20

(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

L

i i
—
and | Al
Je |

21

(O — A) A (A — 0) is Not a Theorem of G.D. Logic

But, if rendez-vous was possible, the formula is realizable

22

Waitfree = “impossible to wait for other processes”

(free as in tax-free and alcohol-free)
A task can be waitfreely solvable or not.

A task C I” x O" where P is processes, | is inputs and O is outputs
A watifreely unsolvable task: {((x,y), (y,x)) | x,y € {0,1}}

A waitfreely solvable task:

{((x¥), (5, x +¥))s ((x,)5 (x + ¥, ¥)), ((x,¥), (x + y,x +y)) |
X,y € {0? 1}}

The definition of waitfreedom is long: involving a virtual machine
Saks and Zaharoglou (2000)

23

A task is

waitfreely solvable

e
solvable by a typable A\-GD-term

For a typed lambda calculus A-GDfor Godel-Dummett logic.

24

Formulas, Sequents, Hypersequents

Local Types
pu=L|Plo—opleNpleVe

Global Types
ptu=lilp | et At | ot Vet

where i is a process

Sequent
S =T F 1 wherer is a finite set of global formulas

Hypersequent
Hu=S|(S | #)

25

Hyper-Natural Deduction (Based on Avron’s Hypersequents)

External Rules
HIrar[le HInAF[[
ey | are

Inner Global Rules
H|reept Ayt

H I M-t
and ANZ,VE, VT

and structural rules

com

H|TEEtApt

NEy
H |-yt

NE1

Inner Local Rules

[Ax——— : #H | [ile, T+ [y
[ile, T+ [i]le [l —=Z HTE (e —)
[i]_)g’?-tlrl—[i](cp—)d)) # | reije

| iy
and LE,ANE, AT, VE, VT
26

Example Derivation of [0](O — A) V [1](A — O)

, [0]0,[1]A-[0]0 [0]O,[1]A I [1]A
om [0]0 I [0]A | [1]A + [1]0
- [0](0 —» A) | +[1)(A = 0)

F [0](O — A) Vv [1](A — O) | F [0](O — A) Vv [1](A — 0O)
+ [0](O — A) Vv [1](A — O)

[il —

ilvzT
EC

The conclusion
m as a type, represents the orange—apple protocol
m as a formula, without modalities [i], is the Dummett axiom.

27

Typing Terms

External Rules

Glracm:file G lracn:Jjw

— e .

[Go,G1] | T 6y (M): il | A £ (N): [ile
Inner Global Rules

G|l rom: et Ayt G|l rom: et Ayt
G| resatMm): ot G| reaemy: ¢t
Inner Local Rules

G | x: [ilg, T > M: [i]y
G | ro axM: [ij(¢ —)
Golresm:[ij(¢ >v) G |renN:Jie

[Go,G1] | T > MN: [i]y

where Gg and G; has the same types.

x: [i]e, I > x: [i]e

28

Example Typed Term

x: [0]O,y: [1]A > x: [0]O x: [0]O,y: [1]A > y: [1]A
x: [0]0 > € (x): [0]A | y: [1A &> 2 (y): [1]0
x: [0]0,y: [1JA & € (x): [0]A | x: [0]0,y: [1]A > 7 (y): [1]O
x: [0]0,y: [1JA & inf (7 (x)): ¢ | x: [0]0,y: [1]A & ine¥ (7 (v)):

x: [0]0,y: [1]A & [inl® (7 (x)) , inre (7))1: (¢ :=)[0]A v [1]0

29

Example Reduction 1

From the previously typed term:
write reduction

GO S N T
({0 x} { }, [in® (

7 (x)) ,inré (
4 (x)) ,inrg

30

Example Reduction 1

From the previously typed term:
read reduction

€ h{ LlinE (7)i (T ()]
w({emxh{ Ll (7 (x)inek (T (v))])
~({€ — x}, { }, [inl® (abort) , inr® (7 (y))])

31

Example Reduction 1

From the previously typed term:
write reduction

€ hi{ hinE(7 (), (7)
w({e bl plinE (7 () ines (T ()
(e x}, { 1, [inl® (abort) , inr® (]

«({£ = x}, {€ — y}, [inl¥ (abort) ,in# (

32

Example Reduction 1

From the previously typed term:
read reduction

€ B hEE(7 (). ine
“({e=xh{ B (7 () inr
(> x}, { 1, [inl® (abort) , inr® (

({2 = x}, {£ > y}, [ink® (abort) ,inr® (7 (y))])
~({€ — x}, {€ — y}, [inl® (abort) , inr® (x)])

33

Example Reduction 1

From the previously typed term:
abort propagation

€ B hlneE(Z)i (7 @)
(e xh{ LlinE (7 ()i (T (1))
w({e=x},{ },[inl®(abort) ,inrE (7 W)1)
~({€ — x}, {£ — y}, [inl® (abort) , inr® (14 (Y)>])

~({€ — x}, {€ — y},[inl® (abort) , inr® (x)])
~({€ — x}, {€ — y}, [abort ,inr® (x)])

34

Example Reduction 1

From the previously typed term:
abort propagation

€ B hlneE(Z)i (7 @)
w({e=oh Ll (7 ()i (T ()))
w({e=x},{ },[inl®(abort) ,inrE (7 W)1)
~({€ — x}, {£ — y}, [inl® (abort) , inr® (14 (Y)>])
~({€ > x}, {€ > y}, [inl® (abort) , inr¥ (x)])

({5 x}, {£ = v} [abort ine® (x)])
~({€ = x}, {€— y},inrf (x))

35

Example Reduction 2

From the same term:

€ h{ hOnE (7). (2 ()
~({ hAem yh(inE (7 (x) ines (T (v))])
- 3, {€ — y},[inl® (7 (x)) , inr€ (abort)])

(€ x}, {£ = y}, [in (7 (x)) ,ine# (abort)])
~({£ = x}, {€ =y}, [in® (y) , inr® (abort)])
~({£ = x}, {€ =y}, [in® (y) ; abort])

~({€ = x}, {€— y},inl® (y))

36

Example Reduction 3

Still from the same term:

€ h{ hOnE (7). (T ())
w({€ = x}, { }, [inl® (7 (x)) ,ine® (7 ™))
w({€ = x}, {£ — y}, [inl® (7 (x)) ,ine® (‘_ ™)1

4
w({€ > xb (L v} [ink (y) inet (€ (3))])
w({ > x}, {£ — v}, [ink® (y) , ine® (x)])

37

Strong normalization No typed term can reduce infinitely often
Non-abortfullness No typed term can reduce into abort

Waitfree characterization
A task is waitfreely solvable < solvable by a typed term

38

Lamport (1977) introduced what is now called waitfree computing
Avron (1991) introduced a hypersequent calculus for Godel-Dummett
logic and showed cut-elimination

Gafni and Koutsoupias (1999)
showed that it is undecidable whether a task can be
solved waitfreely

Herlihy and Shavit (1999), Saks and Zaharoglou (2000)
gave a topological characterization of waitfree
computation (Godel Prize 2004)

| found waitfreedom when | was looking at past Godel Prizes

39

Avron’s Question and My Answer

Avron (1991): it seems to us extremely important to determine the
exact computational content of [the intermediate logics with
cut-elimination for hypersequents] — and to develop corresponding
“A-calculi.”

| answer:

m The computational content of Godel-Dummett logic is
waitfreedom

m A\-GD is the A-calculus for it
Fermiiller (2003) gave a natural deduction but not reductions

Future Work:

m generalizing to more logics and investigating classical logic
m adapting to weaker shared memory consistency

40

