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Abstract. There is a protocol called “atomic cross-chain swap” that
spans across multiple blockchains, but is it really atomic? We analyze
the protocol using a modal logic for asynchronous communication. The
modal logic allows us to identify some assumptions required for the
“atomic” property as logical formulas. We first demonstrate that the
atomicity fails without some temporal-epistemic assumptions. We further
construct a proof that the atomicity holds with strong enough temporal-
epistemic assumptions. In both analyses, we use Kripke models of the
modal logic. This is the first analysis of multiple blockchains’ interaction
using a modal logic.

Keywords: modal logic, epistemic logic, asynchronous computation,
blockchains

1 Introduction

This paper analyzes a concurrent, asynchronous protocol involving multiple
blockchains using a modal logic called intuitionistic epistemic logic for asyn-
chronous communication [14].

A blockchain is a singly linked list of data-blobs called blocks. A block con-
tains a cryptographic hash value of the previous block’s contents. The hash value
serves as the link of the list. A single blockchain is useful for ensuring the in-
tegrity of a sequence of blocks because the latest block uniquely identifies the
preceding sequence of blocks (assuming no hash collisions).

Today, some proof-of-work protocols (Bitcoin [19] and similar protocols) are
spinning concurrent, asynchronous activities into fully sequential histories. These
protocols have no fixed number of participants, so the protocols fall out of the
traditional distributed protocols (e.g. Paxos [15] and Chandra-Toueg [3]). These
blockchain protocols have no termination; they never yield final definite con-
sensus but at most an ever-increasing confidence on one result. This is why
these blockchain protocols fall out of scope of some impossibility theorems (e.g.
FLP-theorem [9]) regarding distributed consensus. It turns out many people are
willing to use such protocols without termination.

Once we start using multiple blockchains for performance reasons (as in
Polkadot [25], Plasma [22], or “sharding” aproaches [10,18]), the asynchronous,
concurrent reasoning is again required. As an example, this paper analyzes a



protocol called “atomic cross-chain swap” [16,21]. Fig. 1 is a concise description
of the protocol. In this protocol, two blockchains interact in an asynchronous
manner, and they are claimed to establish an atomic swap together. The atomic
swap is claimed to either succeed in both blockchains or fail in both.

Such atomicity between asynchronically communicating agents sound dubi-
ous to a student of modal epistemic logic, who learns that asynchronous commu-
nication never creates a new piece of common knowledge [4]. An atomic swap,
if it is atomic as the name suggests, should result in common knowledge. This
is because, if the swap atomically succeeds or fails, the result should be known
to both parties, and there is no possibility that two parties see different situa-
tions, including their epistemic states. As a result, there should be an unlimited
nesting of mutual knowledge of the form “X knows Y knows X knows Y knows
· · · that the swap failed.” However, in the asynchronous setting, deep nesting of
knowledge can be attained only after as many round-trip communication. Since
the cross-chain atomic swap does not involve synchronous communication be-
tween the two blockchains, there must be some kind of assumptions supporting
the “atomic” property. This paper clarifies those assumptions.

Our contributions are:

– defining the syntax (Subsect. 2.1) and the semantics (Subsect. 2.2) of logical
formulas for reasoning about the cross-chain atomic swap,

– specifying hashlocks with logical formulas (Sect. 3),
– specifying desired atomicity of cross-chain atomic swaps as logical formulas

(Binary-Outcome) and (Weak-Binary-Outcome) in Sect. 4,
– identifying two sets of assumptions that are not enough for the desired atom-

icity (Prop. 3 and Prop. 4), and
– identifying one set of assumptions that is enough for a form of atomicity

(Prop. 5).

2 The Logic Used in this Paper

Our task is an instance of the general task of ensuring a desired property (in
our case, atomicity) in all possible situations (in our case, protocol executions).
If some situations refute the property, we can continue asking if we can restrict
the possible situations to regain the desired property. We need a mathematical
formalism to express the possible situations, our desired properties, and our
assumptions on the possible situations.

We use the approach of mathematical logic [5]. The possible situations are
represented as models. Each model contains states that are related temporally
or epistemically. Logical formulas express properties of states of models. The
syntax of the logic defines what sequence of symbols counts as logical formulas.
The semantics of the logic defines which states of models satisfy a logical formula.

We use an extension of intuitionistic propositional logic. Intuitionistic logic
originally modeled a mathematician who happens to be an intuitionist. When
a proposition ϕ is known to hold, it holds forever. When the negation ¬ϕ is
known, that would also be remembered forever. When neither ϕ or ¬ϕ is known,



The canonical bitcoin atomic swap works as follows: Alice prepares a random
secret k with a 20-byte hash H=HASH160(k) and then funds the following contract,
in Bitcoin script [2]:

IF

<BKey> CHECKSIGVERIFY

HASH160 <H> EQUAL

ELSE

<AKey> CHECKSIGVERIFY

<ATime> CHECKLOCKTIMEVERIFY

ENDIF

Meaning of this contract: A signature from Bob’s public key BKey in combination
with secret k can spend the money. However as a fallback in case of cancellation, a
signature from Alice’s public key AKey lets her get a refund, but only after ATime.
Bob does not know k, yet. He funds a similar contract on his blockchain using
Alice’s H value, but with a BTime expiring significantly sooner than ATime:

IF

<AKey> CHECKSIGVERIFY

HASH160 <H> EQUAL

ELSE

<BKey> CHECKSIGVERIFY

<BTime> CHECKLOCKTIMEVERIFY

ENDIF

Now, Alice may redeem Bob’s contract but in doing so, she must reveal k. Bob
can now see k which allows him to redeem Alice’s contract. If the deal is called off
then Bob is allowed to get a refund at BTime, and then Alice can get her refund
after ATime. The above setup is generally perceived as perfectly secure and is being
proposed for safe on-chain cryptocurrency exchanges that do not involve a third
party.

Fig. 1. A description of a cross-chain atomic swap, cited from [16] with cosmetic mod-
ifications.



according to the intuitionistic interpretation of disjunction ∨, the disjunction ϕ∨
¬ϕ is not known. In other words, whenever ϕ ∨ ψ is known, either ϕ is known,
or ψ is known.

This intuitionistic reading of disjunction seems particularly useful for settle-
ment of funds when ϕ means “Alice obtains the fund” and ψ means “Bob obtains
the fund.” The settlement should be final, and the finality is already captured
by the persistent nature of intuitionistic logic.

Intuitionistic epistemic logic for asynchronous communication. Modal logic can
express the fundamental assumptions about knowledge and time. For instance,
the formula KAϕ ⊃ KA(KAϕ) says “if A knows ϕ, A knows that A knows ϕ”.
This formula is named “positive introspection.” At first logical formulas look
like merely a shorthand for sentences, but the symbolic treatments scale better
than English sentences, especially when the modalities are nested.

Intuitionistic epistemic logic [14] was designed to reason about asynchronous
communication. The logic can reason about temporal epistemic systems, but it
has no explicit temporal modality. The Kripke model [5] of intuitionistic propo-
sitional logic is reused as the temporal frame. Originally Hirai [14] used the logic
for waitfree communication on shared memory. In this paper we use the logic
for asynchronous communication between multiple blockchains.

2.1 Language

Mathematical logic distinguishes syntax and semantics. Logical formulas them-
selves are just shapes without meaning. A separate criterion dictates when a
model satisfies a formula. Of course, certain formulas are never satisfied, and
these formulas represent falsehood. However, such interpretations come only af-
ter the definition (Def. 2) of semantics.

We first define which sequents of symbols count as logical formulas. The
logical formulas contain names of agents and atomic propositions, so we define
those first.

An agent is one of the four distinct symbols:

a ::= Alice,Bob,X,Y. (1)

They are just distinct symbols, but informally, Alice and Bob are participants
of the protocol in Fig. 1, and X and Y are blockchains.

We choose the following set of atomic propositions:

P ::= D1,D2, k,AY,BX. (2)

Informally, D1 holds whenever the wall clock shows more than one day ahead
since the beginning of the protocol execution, and D2 holds whenever more than
two days. Also informally, k holds when Alice’s secret is publicly visible. AY

holds when the fund on blockchain Y is available to Alice. BX when the fund on
blockchain X is available to Bob. By introducing the last three atomic formulas,
we are effectively assuming that the swaps on blockchains X and Y cannot be



reversed. In practice, agents are supposed to ignore contents of too fresh blocks
that might be orphaned1.

Following Hirai [14], a formula is syntactically defined as

ϕ,ψ ::= ⊥ | P | (Kaϕ) | (ϕ ∨ ψ) | (ϕ ∧ ψ) | (ϕ ⊃ ψ). (3)

where symbols a and P are non-terminal symbols from (1) and (2). The symbol
⊃ stands for implication; a formula of the form (ϕ ⊃ ψ) says ϕ implies ψ.
Negation (¬ϕ) is a shorthand for (ϕ ⊃ ⊥). We omit parentheses when there is
no ambiguity.

Informal readings of the language. BHK-interpretation2 [24, Ch. 1] is a proof-
centric way of reading logical connectives (∧, ∨, ⊃, ⊥ and Ka). If one knows what
counts as a proof of ϕ and what counts as a proof of ψ, BHK-interpretation tells
what counts as a proof of more complicated formulas: ϕ ∧ ψ, ϕ ∨ ψ and ϕ ⊃ ψ.

H1 A proof of ϕ ∧ ψ is given by presenting a proof of ϕ and a proof of ψ.

H2 A proof of ϕ ∨ ψ is given by presenting either a proof of ϕ or a proof of ψ
(plus the stipulation that we want to regard the proof presented as evidence
for ϕ ∨ ψ).

H3 A proof of ϕ ⊃ ψ is a construction which permits us to transform any proof
of ϕ into a proof of ψ.

H4 Absurdity ⊥ (contradiction) has no proof; a proof of ¬ϕ is a construction
which transforms any hypothetical proof of ϕ into a proof of a contradiction.

Hirai [13] extends the list with one clause about the epistemic modality:

HK A proof of Kaϕ is a construction that witnesses agent a’s acknowledgment
of a proof of ϕ and also contains the acknowledged proof.

In other words, a proof of Kaϕ is a proof of ϕ with a’s signature. From a signed
proof of ϕ, one can obtain an unsigned proof of ϕ, so, the formula (Kaϕ) ⊃ ϕ is
always satisfied, as we see later in Prop. 7.

The BHK-interpretation explains the logical connectives. We have to inter-
pret the atomic formulas so that we know what count as proofs of the atomic
formulas. A proof of k is the secret generated by Alice shown in public. A proof
of D1 and D2 could be some real-world information only available one day or
two days after a certain point in time. A proof of AY is an onchain proof that
Alice can spend the fund on blockchain Y. A proof of BX is an onchain proof
that Bob can spend the fund on blockchain X. If the cross-chain atomic swap is
really atomic, AY and BX both should hold or neither (Sect. 4).

1 A block is orphaned when it belongs to a blockchain that is not considered canonical
anymore. This sometimes happens after branching blockchains are formed.

2 BHK stands for Brouwer-Heyting-Kolmogorov.



2.2 Models

A model (Def. 1) is a set of states equipped with some relations and functions. We
will be using small, finite models to refute the desired atomicity of the protocol
(Props. 3 and 4). We will also be reasoning about arbitrary models to establish
the atomicity (Prop. 5).

Definition 1 (Def. 2.3, [14]). Let A denote the set of agents. A model 〈W,≺, (fa)a∈A, ρ〉
is a tuple with following properties:

1. 〈W,�〉 is a partially ordered set whose elements are called states,
2. for each agent a ∈ A, a function fa : W →W satisfies

(a) fa(w) � w,
(b) fa(fa(w)) = fa(w), and
(c) w � v implies fa(w) � fa(v)

3. Let Atom be the set of atomic propositions and P(W ) is the powerset of W .
ρ : Atom → P(W ) is a function such that each ρ(P ) is upward-closed with
respect to �. In other words, w′ � w ∈ ρ(P ) implies w′ ∈ ρ(P ).

Definition 2. We define a relation M,w |= ϕ (pronounced “the model M at
state w satisfies ϕ”) of a model M = 〈W,�, (fa)a∈A, ρ〉, a state w ∈ W and a
formula ϕ. The definition is inductive on the structure of ϕ.

(Case ϕ = ⊥) M,w |= ⊥ never holds.
(Case ϕ = P ) for an atomic formula P , M,w |= P if and only if w ∈ ρ(P ).
(Case ϕ = Kaψ) M,w |= Kaψ if and only if M,fa(w) |= ψ.
(Case ϕ = ψ0 ∧ ψ1) M,w |= ψ0∧ψ1 if and only if both M,w |= ψ0 and M,w |=

ψ1 hold.
(Case ϕ = ψ0 ∨ ψ1) M,w |= ψ0 ∨ ψ1 if and only if M,w |= ψ0 or M,w |= ψ1

holds.
(Case ϕ = ψ0 ⊃ ψ1) M,w |= ψ0 ⊃ ψ1 if and only if for any w′ ∈ W with

w′ � w, the relation M,w′ |= ψ0 implies the relation M,w′ |= ψ1.

Since ¬ϕ is an abbreviation of ϕ ⊃ ⊥, the relation M,w |= ¬ϕ holds if and only
if no v � w satisfies M,v |= ϕ.

Informal interpretation of the model. When a state w satisfies a proposition ϕ, a
proof of ϕ is available in the state. When two states are ordered v � w, they are
temporarily related. Every proof available in the past state v is also available in
the future state w. So, any formula satisfied in v is also satisfied in w (Prop. 6).
Such monotonicity is not found in the real world, where people can forget and
proofs can be lost. When we analyze cryptographic protocols, it is prudent to
assume that attackers do not forget a once-learned secret. The treatment also has
shortcomings. Most importantly, our analysis assumes the finality of transactions
on blockchains. Nonetheless we will find that more assumptions are necessary.

The state fa(w) is agent a’s latest state seen from w. Every proof in fa(w)
are available in w. Moreover, the proofs available in fa(w) are all signed by a
and made available in w, so, if fa(w) contains a proof of ϕ, w contains a proof of



Kaϕ. Such situation typically occurs when a sends a message from state fa(w)
and the message arrives in state w. We assume such messages contain all current
knowledge of a at fa(w).

We consider any fa(w) as a local state of a and thus fa(fa(w)) is always equal
to fa(w). As a result, Kaϕ and KaKaϕ are always equivalent (so the property
“positive introspection” holds.

Our models can distinguish (a) asynchronous round-trip between Alice and
Bob from (b) synchronous communication between them (Fig. 2). In the asyn-
chronous case, if fAlicefBobfAlice(v) satisfies ϕ, v satisfies KAliceKBobKAliceϕ but
not necessarily KAliceKBobKAliceKBobϕ. In the synchronous case, if w satisfies
ϕ, w also satisfies KAliceKBob · · ·KBobϕ with any repetition of KAlice and KBob.

fAlice

fAlice fAlice

fBob

fBob

(a) (b)

w

v

Fig. 2. Kripke models showing (a) asynchronous round-trip and (b) synchronous com-
munication between Alice and Bob. Circles represent the states of models. In (a), the
state v contains Bob’s message from fBob(v), which in turn contains Alice’s message
from fAlicefBob(v).

3 Common Assumptions

3.1 For the Hashlock on Blockchain X

The cross-chain atomic swap (Fig. 1) is a protocol based on a primitive called
“a hashlock.” We need to specify the hashlocks using logical formulas.

The most relevant property is a hashlock’s ability to settle payments. After
a finite amount of time, a hashlock is able to dictate whether the locked fund
already belongs to Bob or never. Concretely on blockchain X, after two days,
either Bob has obtained the fund and the secret has been revealed (BX ∧ k) or
Bob will never get the fund (¬BX).

KX(D2 ⊃ ((BX ∧ k) ∨ ¬BX)). (X-live1)

A hashlock can be unlocked using a secret. On blockchain X, if two days have
not passed yet, if Bob provides the secret (KBobk), Bob obtains the fund (BX).

KX(D2 ∨ (KBobk ⊃ BX)). (X-live2)



Here, we could not say (¬D2) ⊃ · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX ⊃ KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 ⊃ ((AY ∧ k) ∨ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 ∨ (KAlicek ⊃ AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY ⊃ KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 ⊃ D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 ⊃ ((AY ∧ BX) ∨ ((¬AY) ∧ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.



Proof. By constructing a model M and a state w (Fig. 3) so that M satisfies all
assumptions at every state but w does not satisfy (Binary-Outcome). The state
w in Fig. 3 does not satisfy ¬AY because there is a future state satisfying AY. On
the other hand, w does not satisfy AY either. So, without looking at BX or ¬BX,
we can conclude that w does not satisfy (AY∧BX)∨ ((¬AY)∧ (¬BX)). However,
w does satisfy D2. So w does not satisfy the implication (Binary-Outcome). ut

Informally speaking, on state w in Fig. 3, two days have passed but neither
blockchain has produced visible blocks since the beginning of the protocol.

D2, D1

AY, k,
D2, D1

w

fYfX

≼

Fig. 3. A model M and a state w for the proof of Prop. 3. Three circles represent the
three states of M . Each function fa is identity whenever not explicitly shown. The �
relation holds whenever two states are connected through dashed lines and arrows in
a bottom-to-top way.

4.2 A Failure on a Weaker Binary Outcome

We can require that both blockchains contain blocks produced after two days
have passed:

KXD2 ⊃ (KYD2 ⊃ ((AY ∧ BX) ∨ ((¬AY) ∧ ¬BX))). (Weak-Binary-Outcome)

This new proposition is strictly weaker than the old one. All states satisfying
(Binary-Outcome) also satisfy (Weak-Binary-Outcome), but the inverse is not al-
ways the case. For instance, state w in Fig. 3 does not satisfy (Binary-Outcome),
but it satisfies (Weak-Binary-Outcome).

Proposition 4 There is a model that satisfies (Y-live1), (Y-live2), (Y-safe),
(X-live1), (X-live2), (X-safe) and (Days) at all states, but does not satisfy (Weak-
Binary-Outcome) at some states.



Proof. By constructing a model M and a state w in it (Fig. 4). ut
Fig. 4 demonstrates a lack of communication between the two chains. More
specifically, although the hashlock on blockchain Y is unlocked, Bob fails to use
the secret revealed on blockchain Y to unlock the hashlock on blockchain X.

D1, D2,
AY, ¬BX,

k

D1, D2,
¬BX

D1, D2,
AY, k

D1

w

fX

fX

fY

fY

≼ ≼

Fig. 4. A model M and a state w for proving Prop. 4. Five circles represent the five
states of M . Each function fa is identity whenever not explicitly shown. The � relation
holds whenever two states are reachable following dashed lines and arrows in a bottom-
to-top way.

4.3 Enough Assumptions for Atomicity

To remedy the situation, we need to assume certain communication between the
two chains. Especially, contents on blockchain Y should be read by Bob and
transmitted over to blockchain X in a timely manner.

In order to talk about the timing restrictions, we add two more agents in
the language: 1 1

4 and 1 1
2 that represent “1 1

4 (resp. 1 1
2 ) days from the beginning

of protocol execution.” In the models, f1 1
2
(w) is equal to w when the wall-

clock time at w is less than one-and-half days from the beginning of protocol
execution. Otherwise, f1 1

2
(w) is a previous state where the wall-clock time is less

than one-and-half days from the beginning.
Now we can spell out assumptions; whenever blockchain Y has a record

at one-and-quarter days, Bob should have read and submitted the record to
blockchain X by one-and-half days:

(KYK1 1
4
ϕ) ⊃ KXK1 1

2
KBobKYK1 1

4
ϕ. (Bob-has-chance)



We have defined a set of infinitely many logical formulas where ϕ is replaced
with arbitrary logical formulas.

When blockchain Y contains records at the two-day moment, it also contains
witnesses from the one-and-quarter-day moment, saying that the hashlock had
already been settled; either Alice had used the secret to unlock the hashock, or
Alice would never unlock it:

KY(D2 ⊃ K1 1
4
((AY ∧ k) ∨ (¬AY))). (Y-timed1)

Finally, if Bob ever gets to know the secret, Alice should have opened the
hashlock. In other words, Alice does not leak the secret without getting the fund
in blockchain Y:

KBobk ⊃ AY. (Alice-opsec)

Blockchain X at one-and-half days should allow Bob to unlock the hashlock:

KXK1 1
2
((KBobk) ⊃ BX). (X-live1 1

2 )

When we impose those formulas at every state, the desired weak binary
outcome property holds.

Proposition 5 If a model M satisfies (X-live2), (Y-timed1), (Alice-opsec), (Bob-
has-chance), (X-live1 1

2) at every state, M also satisfies (Weak-Binary-Outcome)
at every state.

Before proving this proposition, we need some preparations.

Proposition 6 (Kripke monotinicity [14]) M,w |= ϕ and w � w′ imply
M,w′ |= ϕ.

Proof. By structural induciton on ϕ. ut

Proposition 7 Any model M at any state w satisfies any (Kaϕ) ⊃ ϕ.

Proof. For any w′ with w′ � w, we assume M,w′ |= Kaϕ and claim M,w′ |= ϕ.
By the semantics of Ka, fa(w′) satisfies ϕ. By the definition of a model, fa(w′) �
w′ holds. By Prop. 6, w′ satisfies ϕ. ut

With these two auxiliary propositions, we are ready to continue.

Proof (of Prop. 5). We take an arbitrary state v in such a model M . And we take
an arbitrary state w with w � v. We assume M,w |= KXD2 and M,w |= KYD2.
It is enough to show that w satisfies (AY ∧ BX) ∨ ((¬AY) ∧ (¬BX)).

Since w satisfies KYD2, fY(w) satisfies D2. Since w satisfies (Y-timed1),
fY(w) satisfies D2 ⊃ K1 1

4
((AY ∧ k) ∨ (¬AY)). So fY(w) satisfies K1 1

4
((AY ∧

k) ∨ (¬AY)). That is to say w satisfies KYK1 1
4
((AY ∧ k) ∨ (¬AY)). By (Bob-

has-chance), w also satisfies KXK1 1
2
KBobKYK1 1

4
((AY ∧ k) ∨ (¬AY)). In other

words, f1 1
4
fYfBobf1 1

2
fX(w) satisfies AY ∧ k (the positive case) or ¬AY (the

negative case).



(The positive case) By (X-live11
2 ), w satisfies KXK1 1

2
((KBobk) ⊃ BX). In

other words, f1 1
2
fX(w) satisfies (KBobk) ⊃ BX. Since fBobf1 1

2
fX(w) is a

future of f1 1
4
fYfBobf1 1

2
fX(w), by Kripke monotonicity, fBobf1 1

2
fX(w) sat-

isfies AY ∧ k. So, f1 1
2
fX(w) satisfies KBobk. The same state also satisfies

(KBobk) ⊃ BX. As a result, f1 1
2
fX(w) satisfies BX. By Kripke monotonicity,

w satisfies BX. Also by Kripke monotonicity, w satisfies AY.
(The negative case) Since f1 1

2
fX(w) � f1 1

4
fYfBobf1 1

2
fX(w), by Kripke mono-

tonicity, f1 1
2
fX(w) also satisfies ¬AY. Since f1 1

2
fX(w) satisfies (Alice-opsec),

by the semantics of ⊃, f1 1
2
fX(w) satisfies ¬KBobk. Since fX(w) � f1 1

2
fX(w),

by Kripke monotonicity, fX(w) also satisfies ¬KBobk. We claim that w
satisfies ¬BX. For that, seeking contradiction, We assume some x � w
satisfies BX. State x satisfies (X-safe), so by the semantics of ⊃, x also
satisfies KXKBobk. In other words, fX(x) satisfies KBobk. However, since
fX(x) � fX(w), this contradicts fX(w) satisfying ¬KBobk. ut

Informal reading of the result. We have identified a set of sufficient assumptions
that supports the atomicity. We should now reflect on the meaning of these logi-
cal formulas, but before that we have to evaluate our choice of the logic. When we
modeled the cross-chain atomic swap using intuitionistic epistemic logic, before
introducing any axioms, we effectively assumed that all propositions are stable.
That is, once they become true, they remain true forever. This stability seems
appropriate for the revealed secret k, but questionable for heads of blockchains.
For Bitcoin, the head of the chain sometimes jumps to other branches. We discuss
approaches to circumvent this problem in Sect. 6.

(Bob-has-chance) is about Bob’s ability to read from the blockchain Y and
submit the obtained knowledge to the blockchain X, which in turn requires
availability of both blockchains. (Alice-opsec) is about Alice’s ability to keep the
secret when she chooses not to unlock the hashlock. This also requires pre-image
resistance of the hash function. The assumptions (Y-timed1) and (X-live2) are
about the behavior of the onchain scripts. These two assumptions need to be
backed by program analysis. A formal notation of onchain programs like SoK [1]
might ease such program analysis.

5 Related Work

Emerson and Clarke [7] already regarded Kripke models as states of communi-
cating processes. They proposed a method for automatically generating finite
state machines that represent states of communicating processes. They describe
a procedure to decide whether such finite state machines exist for a specification.

Smart contract verification. Luu et al. [17] define a lightweight semantics of
Ethereum. Nikolic et al. [20] use the same semantics to capture bugs spanning
multiple Ethereum transactions. Sergey and Aquinas [23] gave an insight that
concurrent reasoning applies to Ethereum contracts’ interactions. None of these
works treats the interaction of multiple blockchains.



Halpern and Pass’s knowledge-based analysis on the epistemic property of a
blockchain. Halpern and Pass [12] also analyze the communication ability of
a blockchain using a modal epistemic logic. The reasoning framework of Halpern
and Pass is based on the tradition of model epistemic logic, admittedly more
faithfully than our work is, because their “runs and systems” [8] model has been
very popular among computer scientists.

Their focus of attention is different from ours. Halpern and Pass [12] look
at a blockchain as a communication medium between agents, and propose a
weak form of common knowledge that the blockchain provides. To seek a form
of common knowledge, their analysis needs to consider entering and leaving
agents. Our analysis never required a global view of all agents.

The difference seems to come from different roles of blockchains. Halpern
and Pass seem to regard a blockchain as a mechanism for public attestation of
valid contracts between agents. In our analysis, Alice is never interested in Bob’s
knowledge, or vice versa. The formulas in our analysis do not involve nesting of
epistemic modalities like KAliceKBob · · · . The participants are interested to see
value transfers recorded on the finalized blocks, but not interested in whether
other agents have seen those blocks.

We analyze a situation where multiple blockchains are involved, and, we have
identified some synchrony conditions for specific agents (Bob-has-chance), (Y-
timed1), (X-live1 1

2 ) that are useful for a specific protocol, while Halpern and
Pass assume a global parameter to limit delays of all messages.

Hirai’s intuitionistic epistemic logic. Hirai [14] characterized waitfree communi-
cation over sequentially consistent shared memory using intuitionistic epistemic
logic. That work targetted shared memory multi-thread computation. There, a
well-known property called sequential consistency was represented as an axiom
type3. In this paper, we are figuring out desired properties out of Kripke models
that reveal missing assumptions (Props. 3 and 4). Modal logics are useful not only
for explaining known properties but for identifying unspecified requirements.

Gleissenthall and Rybalchenko [11] use a more expressive logic with separate
temporal modalities and epistemic modalities for characterizing sequential con-
sistency, linearizability and eventual consistency. Their logic is more suitable to
express liveness properties (e.g., “if Alice tries to do something infinitely often,
she eventually succeeds”).

6 Discussion

The biggest remaining problem is the lurking unsoundness with respect to the re-
ality. In our modeling, any satisfied formula remains true in the future. Blockchain
developers call our assumption finality. Bitcoin does not provide finality. Some-
times blockchains fork and all branches except one are orphaned. In those cases,
a history becomes abandoned. There are three ways to deal with this problem:

3 An axiom type is a logical formula with free variables like ϕ and ψ that can be
substituted by any formulas.



1. assume finality and hold agents responsible if they trust blocks too early,
2. model the probability that blocks are final, and
3. model all forking branches.

Our current treatment is 1. Agents are required to ignore too fresh blocks and
only take the contents of older blocks into their knowledge base, and our analysis
breaks down when the agents are unluckily not patient enough. Our treatment is
in line with the cryptocurrency exchanges’ treatment of blockchains. Halpern and
Pass [12] talk about probabilistic treatments, which supposedly would support
the approach 2. The approach 3. seems not yet explored, but should be an
interesting topic for modal logicians.

Another discrepancy is the requirement that agents remember all knowledge.
This discrepancy does not matter when a protocol is shown not to work because
incomplete memory doesn’t work better than complete memory. On the other
hand, once a protocol is shown to work, the concrete implementation of the
protocol can optimize away irrelevant knowledge.

For more convenience, an automatic decision procedure is desirable that can
judge whether a desired property is valid given some assumptions. Is there always
a finite model that refutes an invalid property? Moreover, when one develops an
on-chain program, their possible behavior should be spelled out automatically
as logical formulas.

Our biggest diversion from the traditional treatment of knowledge is the
treatment of blockchains as agents. Usually network participants or processes are
treated as agents, but not a data structure maintained on the network. Since the
semantics of intuitionistic epistemic logic never relies on a global state, we never
had to identify a blockchain from a global view point. Given a local w, fX(w) is
blockchain X’s state just according to w. If we used the traditional S5 epistemic
logic [6], we would define which two states blockchain X can distinguish, but
that criterion would assume an undisputed global identification of blockchain X.

The take away for blockchain protocol designers is that, for the atomic cross-
chain swap to be atomic, availability and safety assumptions are necessary. For
better certainly, merged blocks (e.g. Aspen’s checkpoints [10]) will be effective.
A merged block belongs to multiple blockchains all at once or none at all. With
a merged block, two blockchains can share common knowledge in the same way
Alice and Bob share common knowledge in Fig. 2 (b).

7 Conclusion

We used Kripke models of intuitionistic epistemic logic to see what kind of
assumptions are necessary for “atomic” property of the atomic cross-chain swaps
(Props. 3 and 4). We also showed a set of assumptions is enough for the “atomic”
property to hold (Prop. 5). For cross-chain atomic swaps to be atomic, external
agents’ abilities to read and write blocks within a limited timeframe is crucial.
To our knowledge, this is the first analysis of inter-blockchain communication
using a modal logic.
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