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Abstract

In the celebrated Gödel Prize winning papers, Herlihy, Shavit, Saks and Zaharoglou gave topolog-
ical characterization of waitfree computation. In this paper, we characterize waitfree communication
logically. First, we give an intuitionistic epistemic logic K∨ for asynchronous communication. The
semantics for the logic K∨ is an abstraction of Herlihy and Shavit’s topological model. In the same
way Kripke model for intuitionistic logic informally describes an agent increasing its knowledge
over time, the semantics of K∨ describes multiple agents passing proofs around and developing their
knowledge together. On top of the logic K∨, we give an axiom type that characterizes sequential con-
sistency on shared memory. The advantage of intuitionistic logic over classical logic then becomes
apparent as the axioms for sequential consistency are meaningless for classical logic because they are
classical tautologies. The axioms are similar to the axiom type for prelinerilty (ϕ ⊃ ψ)∨ (ψ ⊃ ϕ).
This similarity reflects the analogy between sequential consistency for shared memory scheduling
and linearity for Kripke frames: both require total order on schedules or models. Finally, under se-
quential consistency, we give soundness and completeness between a set of logical formulas called
waitfree assertions and a set of models called waitfree schedule models.

1 Introduction

Waitfree Computation The main purpose of this paper is to characterize waitfree communication log-
ically (Theorem 4.5) in a language as simple as possible. Waitfreedom [11] is a restriction on distributed
programs over shared memory. It forbids any process to wait for another process. Some tasks can be
solved by a well-chosen waitfree protocol while the others cannot.

For example, it is waitfreely impossible for each one of two processes to attain the input value of the
other process. On the other hand, it is waitfreely possible for either one of two processes to attain the
input value of the other process. A waitfree protocol that solves this task is:

• process a tells the memory m that ϕ holds, and then m replies back to a,

• process b tells the memory m that ψ holds, and then m replies back to b.

After this protocol finishes, either ϕ has been communicated from a to b or ψ has been communicated
from b to a. In the logic K∨ , this fact is represented by a formula (KaKmKaϕ ∧KbKmKbψ) ⊃ (KaKbψ ∨
KbKaϕ), which is deducible in K∨with sequential consistency (Figure 2).

Herlihy and Shavit [12] characterized waitfree computation using simplicial topology (See Sec-
tion 6). Using their characterization, Gafni and Koutsoupias [9] showed that it is undecidable whether
a task is waitfreely solvable or not. In this paper we show that, when tasks are restricted to communi-
cation defined by a class of logical formulas we call waitfree assertions, it is decidable whether a task is
waitfreely solvable or not (Subsection 4.1).

∗University of Tokyo, Dept. of Computer Science, 7-3-1 Hongo, Tokyo 113-0033 Japan. yh@lyon.is.s.u-tokyo.ac.jp

1



Intuitionistic Epistemic Logic for Sequential Consistency Hirai, Y.

Sequential Consistency The topological characterization by Herlihy and Shavit [12] implicitly as-
sumes sequential consistency [17] for shared memory. Since we seek to use a simple language, we state
sequential consistency explicitly in the language. We characterize sequential consistency with an axiom
type (Kmϕ ⊃ Kmψ)∨ (Kmψ ⊃ Kmϕ) in the logic K∨ for asynchronous computation. The axiom type is
sound (Theorem 3.3) and strong complete (Theorem 3.9) for a class of models called sequential models
where memory states are temporarily lined up in a total order.

Asynchronous Communication We define an intuitionistic modal propositional logic that we call
K∨ and show soundness (Theorem 2.8) and strong completeness (Theorem 2.14) for Kripke semantics.
The semantics of K∨ is simple: it has only one function for each agent in addition to the Kripke model for
intuitionistic propositional logic. We deliberately identify the partial order in Kripke frame with the tem-
poral relation. Intuitionistic logic can be seen as a logic describing an agent whose knowledge increases
over time. The logic K∨ can be seen as a logic describing multiple agents that asynchronously commu-
nicate with each other and increase their knowledge. Although K∨ deals with communication, the logic
has only epistemic modalities so that it has simpler syntax than many other logics for communication.

There are other choices: there have been proposed a huge number of epistemic logics for communica-
tion [3, 4, 5, 6, 10, 14, 18, 22, 23, 29] and a huge number of intuitionistic modal logics [1, 7, 21, 22, 24].
In both cases, when considered under Kripke semantics, the huge variety of logics comes from the diver-
sity of relationships between two binary relations on the state space. In intuitionistic modal logic, the two
relations are: (a) which state is prior to which state with regard to Kripke monotonicity and (b) the modal-
ity in which state refers to which state. In logics for communication, the two relations are: (a’) which
state is temporarily prior to which state and (b’) from which state to which state communication occurs.

The semantics of K∨ uses a binary relation and functions on possible worlds instead of additional
binary relations. This choice dramatically limits the room for design choice. Also, we identify relations
(a) with (a’) and (b) with (b’) in order to make the language of K∨ simpler.

Structure of Paper Although this introduction so far is organized in the top-to-bottom order, the rest
of this paper is in the opposite bottom-to-top order. Sections 2–4 respectively treat asynchronous com-
putation in general, sequential consistency and waitfree communication.

2 Intuitionistic Epistemic Logic for Asynchronous Communication

2.1 Syntax

We fix a countably infinite set of propositional variables PVar and a set of agents A. We use the meta-
variables P,Q, . . . running over PVar and a,b, . . . running over A.

Definition 2.1. We define a formula ϕ by the BNF:

ϕ ::= ⊥ | P | (Kaϕ) | (ϕ ∨ϕ) | (ϕ ∧ϕ) | (ϕ ⊃ ϕ).

The unary operators connect more strongly than the binary operators. We sometimes omit the parentheses
when no confusion occurs. We use = for syntactic equality of formulas. The notation (¬ϕ) stands for
(ϕ ⊃⊥). For a sequence of formulas Γ = (ϕi)i∈I or a set of formulas Γ, the notation KaΓ stands for the
sequence (Kaϕi)i∈I or the set {Kaϕ | ϕ ∈ Γ} respectively.

Definition 2.2. We define the proof system of K∨ by Figure 1.

For a set of formula Γ and a formula ϕ , Γ ' ϕ denotes a relation where there is such a finite se-
quence Γ0 that Γ0 ' ϕ is deducible and that Γ0 contains only formulas in Γ.
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(axiom) ϕ ' ϕ
Γ ' ϕ

(weakening) ψ, Γ ' ϕ
ϕ, ϕ , Γ ' ϕ ′

(contraction)
ϕ, Γ ' ϕ ′

Γ,ϕ,ψ, Γ′ ' ϕ ′
(exchange)

Γ, ψ,ϕ , Γ′ ' ϕ ′
Γ ' ϕ Γ′ ' ψ

(∧-I)
Γ,Γ′ ' ϕ ∧ψ

Γ ' ϕ
(∨-I0) Γ ' ϕ ∨ψ

Γ ' ϕ
(∨-I1) Γ ' ψ ∨ϕ

Γ ' ϕ ∧ψ
(∧-E0) Γ ' ϕ

Γ ' ϕ ∧ψ
(∧-E1) Γ ' ψ

Γ ' ψ0 ∨ψ1 Γ, ψ0 ' ϕ Γ, ψ1 ' ϕ
(∨-E) Γ ' ϕ

ϕ, Γ ' ψ
(⊃-I) Γ ' ϕ ⊃ ψ

Γ ' ψ0 ⊃ ψ1 Γ ' ψ0(⊃-E) Γ ' ψ1

Γ ' ⊥(⊥-E) Γ ' ϕ
(T)

Kaϕ ' ϕ

(introspection)
Kaϕ ' KaKaϕ

Γ ' ϕ
(nec)

KaΓ ' Kaϕ
(∨K)

Ka(ϕ ∨ψ) ' (Kaϕ)∨Kaψ

Figure 1: Deduction rules of K∨ .

2.2 Semantics

We define validity of a formula on a state in a model. A model is a Kripke model for propositional
intuitionistic logic equipped with an additional mapping fa : W → W for each agent a ∈ A where W is
the set of possible states. Informally1, the function fa represents the “view” of agent a. When the current
state is w ∈W, agent a sees that the current state is fa(w) ∈W , in other words, agent a knows everything
valid in fa(w). Agent a also sees that agent b sees that the current state is fb( fa(w)) ∈ W because we
assume that all agents know the frame structure and the functions fx explicitly or implicitly. This model
is an abstraction of Herlihy and Shavit’s model of waitfree computation [12]. See Section 6 for details.

Definition 2.3. A model 〈W,+,( fa)a∈A,ρ〉 is a tuple of following things:

1. 〈W,+〉 is a partial order,

2. fa : W →W is a function satisfying all of the following conditions for any w ∈W:

(a) (descending) fa(w) + w,
(b) (idempotency) fa( fa(w)) = fa(w),
(c) (monotonicity) w + v implies fa(w) + fa(v),

3. ρ : PVar → P(W ) is a function such that each ρ(P) is upward-closed with respect to +, i.e.,
w′ - w ∈ ρ(P) implies w′ ∈ ρ(P).

With the informal account in mind, the conditions on fa have rationales: descending condition says
an agent a recognizes only truth, idempotency says an agent a recognizes that a recognizes something
whenever the agent a recognizes that thing, and monotonicity says an agent a does not forget things once
they recognized. Differently from classical epistemic logic, there is no distinction between global states
and local states.

Definition 2.4. We define the validity relation |= of a model 〈W,+,( fa)a∈A,ρ〉, a state w ∈ W of the
model and a formula ϕ . Let us fix a model M = 〈W,+, f ,ρ〉 and abbreviate M,w |= ϕ into w |= ϕ . The
definition of |= is inductive on the structure of ϕ .

1This account is informal in that we do not attempt to define the terms “view” and “current state”.
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(Case ϕ = ⊥) w |= ⊥ never holds.

(Case ϕ = P) w |= P if and only if w ∈ ρ(P).

(Case ϕ = Kaψ) w |= Kaψ if and only if fa(w) |= ψ .

(Case ϕ = ψ0 ∧ψ1) w |= ψ0 ∧ψ1 if and only if both w |= ψ0 and w |= ψ1 hold.

(Case ϕ = ψ0 ∨ψ1) w |= ψ0 ∨ψ1 if and only if either w |= ψ0 or w |= ψ1 holds.

(Case ϕ = ψ0 ⊃ ψ1) w |= ψ0 ⊃ ψ1 if and only if for any w′ ∈W, w′ - w and M,w′ |= ψ0 imply M,w′ |=
ψ1.

Theorem 2.5 (Kripke monotonicity). M,w |= ϕ and w + v imply M,v |= ϕ .

Proof. By simple structural induction on ϕ .

Definition 2.6. For a model M, a state w of M and a set of formulas Γ, we write M,w |= Γ when M,w |= ϕ
holds for any formula ϕ ∈ Γ.

Definition 2.7. Γ |= ϕ stands for the relation of a set of a formula Γ and a formula ϕ where M,w |= Γ
implies M,w |= ϕ for any model M and a state w ∈ M.

2.3 Soundness

Theorem 2.8 (Soundness). Γ ' ϕ implies Γ |= ϕ .

Proof. We prove soundness with induction on the definition of '. We fix a model M and we abbreviate
M,w |= ϕ into w |= ϕ .

(axiom)(weakening)(contraction)(exchangeL) Trivial.

(⊃-I) Assume Γ,ϕ |= ψ . Assume w |= Γ. Also assume that there is such a state w′ in M that w′ - w and
w′ |= ϕ hold. By Lemma 2.5, w′ |= Γ holds. Since Γ,ϕ |= ψ , the relation Γ,w′ |= ψ holds.

(⊃-E) Assume Γ |= ϕ ⊃ ψ and Γ |= ϕ . By the second assumption, w |= ϕ holds. The first assumption
says w |= ϕ ⊃ ψ . Since w - w, the relation w |= ψ holds.

(∧-I)(∨-I0)(∨-I1)(∨-E)(∧-E0)(∧-E1) Trivial.

(T) Assume w |= Kaϕ . By definition of |=, fa(w) |= ϕ holds. Since fa(w) + w, Lemma 2.5 says w |= ϕ .

(introspection) Assume w |= ϕ . By definition of |=, fa(w) |= ϕ holds. Since f is idempotent, fa( fa(w)) |=
ϕ . Applying the definition of |= again, we obtain w |= Kaϕ .

(nec) Assume Γ |= ϕ and w |= KaΓ hold. Since fa(w) |= Γ, The first assumption says fa(w) |= ϕ . By
definition of |=, the relation w |= Kaϕ holds.

(∨Ka) Assume Γ |= Ka(ϕ ∨ψ). For any state w of any model M, assume w |= Ka(ϕ ∨ψ). By the
definition of |=, fa(w) |= ϕ∨ψ . Applying the definition of |= again, either fa(w) |= ϕ or fa(w) |= ψ
holds. This implies either w |= Kaϕ or w |= Kaψ holds. We have w |= Kaϕ ∨Kaψ .
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2.4 Strong Completeness

We show strong completeness for K∨with canonical model construction as in [28, Ch. 2].

Definition 2.9. A set of formulas Γ is saturated if and only if all of these conditions are satisfied:

1. Γ is deductively closed, i.e., Γ ' ϕ ⇒ ϕ ∈ Γ,

2. ϕ ∨ψ ∈ Γ ⇒ ϕ ∈ Γ or ψ ∈ Γ,

3. Γ /' ⊥.

Lemma 2.10 (Saturation lemma). For a set of formulas Γ with Γ /' ϕ , there exists a saturated set Γω

with Γω /' ϕ and Γ ⊆ Γω .

Proof. We can enumerate all formulas in a sequence (ϕi)i∈N+ . We define Γi inductively:

(Case i = 0) Γ0 = Γ,

(Case i > 0) if {ϕi}∪Γi−1 /' ϕ , Γi = {ϕi}∪Γi−1; otherwise, Γi = Γi−1 ∪{ϕi ⊃ ϕ}. Using these Γi, we
define Γω =

⋃
i∈ω Γi.

Claim: Γω /' ϕ . Seeking contradiction, assume Γω ' ϕ . Since only finite number of formulas in Γ are
used to prove ϕ , there exists a minimal i with Γi ' ϕ . Since Γ /' ϕ , i /= 0. Either Γi = {ϕi}∪Γi−1 or
Γi = {ϕi ⊃ ϕ}∪Γi−1. The first case is explicitly forbidden. In the second case, Γi−1,ϕi ⊃ ϕ ' ϕ holds.
That means Γi−1 ' (ϕi ⊃ ϕ) ⊃ ϕ . Also, since we could not take the first case, Γi−1,ϕi ' ϕ holds. That
means Γi−1 ' ϕi ⊃ ϕ . These combined, Γi−1 ' ϕ holds, which contradicts to the minimality of i.
Claim: Γω is a saturated set.

Proof of Claim. 1. Assume Γω ' ψ . There is i ∈ N+ with ϕi = ψ . We know that Γi−1 ∪{ϕi} /' ϕ . It
means ψ ∈ Γω .

2. Assume ψ0 ∨ψ1 ∈ Γω . Seeking contradiction, assume ψ0 /∈ Γω and ψ1 /∈ Γω . By construction,
Γω ' ψ0 ⊃ ϕ and Γω ' ψ1 ⊃ ϕ . Since Γω is deductively closed, by (∨-E) rule, we have Γω ' ϕ ,
which contradicts to the previous fact.

3. Since Γω /' ϕ , Γω /' ⊥.

Since Γ = Γ0, Γω contains Γ0. The lemma is now proved.

Definition 2.11 (Canonical model candidate). We define a tuple Mc = 〈Wc,+c,( f c
a )a∈A,ρc〉.

• Wc is the set of saturated sets of formulas,

• Γ +c ∆ if and only if Γ ⊆ ∆,

• f c
a (Γ) = {ϕ | Kaϕ ∈ Γ},

• ρc(P) = {Γ | P ∈ Γ}.

Lemma 2.12 (Canonical model). The tuple Mc = 〈Wc,+c,( f c
a )a∈A,ρc〉 is a model.

Proof. First, let us check f c
a is actually a function Wc →Wc. Assume Γ ∈Wc.

Claim: fa(Γ) is a saturated set of formulas.
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Proof of Claim. To prove the claim, we check each condition on the Definition 2.9 of saturated sets.

1. Assume f c
a (Γ) ' ϕ . By rule (nec),Ka( fa(Γ)) ' Kaϕ . Since Ka( f c

a (Γ)) ⊆ Γ, the relation Γ ' Kaϕ
holds. Since Γ is deductively closed, Kaϕ ∈ Γ. By definition of f c

a , ϕ ∈ f c
a (Γ).

2. Assume ϕ ∨ψ ∈ f c
a (Γ). By definition of f c

a , Ka(ϕ ∨ψ) ∈ Γ. By rule (∨Ka), Ka(ϕ ∨ψ) ' Kaϕ ∨
Kaψ . Since Γ is deductively closed, Kaϕ ∨Kaψ ∈ Γ. Since Γ is saturated, either Kaϕ ∈ Γ or
Kaψ ∈ Γ. By definition of f c

a , either ϕ ∈ f c
a (Γ) or ψ ∈ f c

a (Γ).

3. Seeking contradiction, assume f c
a (Γ) ' ⊥. Since f c

a (Γ) is deductively closed, ⊥ ∈ f c
a (Γ). By

definition of f c
a , Ka⊥∈ Γ. Because of the rule (T), Γ ' ⊥. This contradicts to the assumption of Γ

being a saturated set.

Now, let us check each condition in Definition 2.3 to make sure the tuple is actually a model:

1. +c is a partial order because set theoretic inclusion ⊆ is a partial order.

2. (a) f c
a (Γ) + Γ of the rule (T).

(b) f c
a ( f c

a (Γ))⊆ f c
a (Γ) is now obvious from the previous line. Let us show the opposite. Assume

ϕ ∈ f c
a (Γ). By definition of f c

a , Kaϕ ∈ Γ. By the rule (introspection), Γ ' KaKaϕ . Since Γ is
deductively closed, KaKaϕ ∈ Γ. Thus ϕ ∈ f c

a ( f c
a (Γ)).

(c) Assume Γ + ∆. Every Kaϕ ∈ ∆ is also in Γ. Thus f c
a (Γ) + f c

a (∆).

3. Assume Γ′ - Γ ∈ ρc(P). P ∈ Γ. So P ∈ Γ′. Thus Γ′ ∈ ρc(P).

Lemma 2.13. For a saturated set of formula Γ and the canonical model Mc, an equivalency ϕ ∈ Γ ⇔
Mc,Γ ' ϕ holds.

Proof. By induction on ϕ .

(Case ϕ = ⊥) Neither side ever holds.

(Case ϕ = P) By definition of ρc, ϕ ∈ Γ ⇔ Γ ∈ ρ(P) ⇔ Mc,Γ |= P.

(Case ϕ = ψ0 ∧ψ1)(Case ϕ = ψ0 ∨ψ1)(Case ϕ = Kaψ) Directly from the induction hypothesis.

(Case ϕ = ψ0 ⊃ ψ1) (⇒) Assume Mc,Γ |= ψ0 ⊃ ψ1. Seeking contradiction, assume ψ0 ⊃ψ1 /∈Γ. Since
Γ is deductively closed, Γ,ψ0 /' ψ1. By Lemma 2.10, there exists a saturated set Γ′ with Γ′ ⊇
Γ∪{ψ0} and Γ′ /' ψ1. By induction hypothesis, Mc,Γ′ |= ψ0 but not Mc,Γ′ |= ψ1. Since Γ′ - Γ,
this contradicts to Mc,Γ |= ψ0 ⊃ ψ1.
(⇐) Assume ψ0 ⊃ψ1 ∈∆, ∆′ -∆ and Mc,∆′ |= ψ0. Showing Mc,∆′ |= ψ1 is enough. By induction
hypothesis, ψ0 ∈ ∆′. Since ∆′ is deductively closed and ψ0 ⊃ ψ1 ∈ ∆′, ψ1 ∈ ∆′. By induction
hypothesis, Mc,∆′ |= ψ1.

Now we have shown the lemma.

Theorem 2.14 (Strong completeness). Γ |= ϕ implies Γ ' ϕ .
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Proof. We show the contraposition: assuming Γ /' ϕ , we show Γ /|= ϕ . By Lemma 2.10, there is a
saturated set of formula Γ′ with Γ′ /' ϕ and Γ′ ⊇ Γ. By Lemma 2.13, Mc,Γ′ |= Γ but not Mc,Γ′ |= ϕ .
This denies Γ |= ϕ .

Is it decidable whether a formula is a theorem of K∨ or not? Does K∨ have finite model property?
These are interesting problems. When the Law of Excluded Middle is added to K∨, the obtained logic
has all the theorems of both classical epistemic logic and the logic (Alt)A. In classical epistemic logic,
when there are more than two agents, Maddux’s algebraic result in [19] implies that it is undecidable
whether a formula is a theorem or not. The result in Maddux [19] also implies that classical epistemic
logic does not have finite model property when there are more than two agents. On the other hand, the
classical modality (Alt)n, whose modality is defined by a function on Kripke frames, is axiomatizable
and has finite model property [8] regardless of the number n of Alt-modalities. Since K∨ is similar to
both logics, it is interesting whether K∨ has finite model property and decidability.

3 Axiom Type for Sequential Consistency

A schedule determines temporal partial order of events such as message sending and receiving. A correct
program must behave correctly under every schedule. Shared memory consistency is a restriction on
schedules. When a stronger memory consistency is posed, it is easier for programs to behave correctly.
This is analogous to the fact that when a stronger condition on models implies more valid formulas.

In this section, we characterize sequential consistency with a set of axioms. Sequential consistency
defined by Lamport [17] is essentially a condition requiring the states of memory lined up in a total
order. We define a deduction system 'SC by adding an axiom type to K∨ and characterize sequential
consistency.

Henceforth, we assume A = {m}∪P (m /∈ P), where P is the set of processes and m represents the
shared memory.

Definition 3.1. We let SC be the set of formula of the form (Kmϕ ⊃ Kmψ)∨ (Kmψ ⊃ Kmϕ).
We add a rule (SC) to the previous calculus ': (SC) ' ϕ (ϕ ∈ SC)
We define Γ 'SC ϕ in the same way as Γ ' ϕ .

Note that all axioms in the set SC are classical tautologies so that adding these axioms to classical logic
is meaningless. This is the merit of using intuitionistic logic rather than classical logic.

Definition 3.2. A sequential model is a model where for any states w and w′ either w + w′ or w′ + w
holds if fm(w) = w, fm(w′) = w′ and there exists a state x with x + v and x + w.

3.1 Soundness

Lemma 3.3. 'SC ϕ ⇒ M |= ϕ for any sequential model M.

Proof. We extend the induction of Lemma 2.8 with a clause for the rule (SC).

(SC) Seeking contradiction, assume M,w /|= (Kmϕ ⊃ Kmψ)∨ (Kmψ ⊃ Kmϕ). The definition for |=
says that there exist states w0,w1 - w with M,w0 |= Kmϕ , M,w1 |= Kmψ , M,w1 /|= Kmψ and
M,w0 /|= Kmϕ . These and Kripke monotonicity (Lemma 2.5) contradicts to the assumption that M
is a sequential model.

Other cases are the same as Lemma 2.8.
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3.2 Strong Completeness

Definition 3.4. A set of formulas Γ is SC-saturated if and only if all of these conditions are satisfied:

1. Γ is SC-deductively closed, i.e., Γ 'sc ϕ ⇒ ϕ ∈ Γ,

2. ϕ ∨ψ ∈ Γ ⇒ ϕ ∈ Γ or ψ ∈ Γ,

3. Γ /'sc ⊥.

Lemma 3.5 (Saturation lemma). For a set of formulas Γ with Γ /'sc ϕ , there exists a saturated set of
formulas Γω with Γω /'sc ϕ and Γ ⊂ Γω .

Proof. The same as Lemma 2.10 where each ' is replaced by 'sc.

Definition 3.6 (Canonical model candidate for sequential consistency). We define a tuple
Msc = 〈W sc,+sc,( f sc

a )a∈A,ρsc〉 in the same way as Definition 2.11 of Mc except that Wsc is the set of
SC-saturated sets of formulas.

Lemma 3.7 (Canonical model for sequential consistency). The tuple Msc is a sequential model.

Proof. First, we can show, in the same way as before, that checking f sc
a is actually a function W sc →W sc.

Also, checking each condition in Definition 2.3 is similar so that we see Msc is actually a model. Finally,
to see that the model Msc is sequential, let Γ,∆ and Θ be states of Msc and assume Θ +sc ∆, Θ +sc ∆,
f sc
m (Γ) = Γ and f sc

m (∆) = ∆. We claim that either ∆ +sc Γ or Γ +sc ∆ holds. Seeking contradiction, deny
the claim. Since the relation +sc is actually the set theoretic inclusion, there exist formulas ϕ and ψ with
ϕ ∈ Γ, ϕ /∈ ∆, ψ ∈ ∆ and ψ /∈ Γ. Since f sc

m (Γ) = Γ, Kaψ /∈ Γ and Kaϕ ∈ Γ hold. Similarly, Kaϕ /∈ ∆
and Kaψ ∈ ∆ hold. Since Θ is SC-saturated, (Kaϕ ⊃ Kaψ)∨ (Kaϕ ⊃ Kaψ) is in Θ. The definition of
saturation says either Kaϕ ⊃ Kaψ ∈ Θ or Kaψ ⊃ Kaϕ ∈ Θ. Consequently, either Kaϕ ⊃ Kaψ ∈ Γ or
Kaψ ⊃ Kaϕ ∈ ∆ holds. Each case leads to contradiction by deductive closedness of Γ and ∆.

Lemma 3.8. For an SC-saturated set of formulas Γ and the canonical model for sequential consistency
Msc, an equivalency ϕ ∈ Γ ⇐⇒ Msc,Γ 'sc ϕ holds.

This lemma can be proved in the same way as Lemma 2.13.

Theorem 3.9 (Strong completeness for sequential consistency). Γ 'sc ϕ holds if M |= Γ implies M |= ϕ
for every sequential model M.

Proof. We show the contraposition: assuming Γ /'sc ϕ , we show that there exists a sequential model M
that satisfies M |= Γ but not M |= ϕ . By Lemma 3.5, there is an SC-saturated set of formula Γ′ with
Γ′ /' ϕ and Γ′ ⊃ Γ. By Lemma 3.8, Msc,Γ′ |= Γ but not Msc,Γ′ |= ϕ .

Example Theorem In Introduction, we gave an example of theorems of 'sc:
(KaKmKaϕ ,KbKmKbψ) ⊃ (KaKbψ ∨KbKaϕ). We give a proof for this theorem in Figure 2.

4 Waitfree Computation

We define a class of formulas called waitfree assertions, which have a special finite model property (The-
orem 4.5): if a waitfree assertion is consistent2, there is a finite model of a special shape where the
assertion is valid. The special shape mimics the scheduling of shared memory defined by Saks and
Zaharoglou [25].

2A formula ϕ is consistent if and only if ⊥ cannot be proved even if ϕ is added as an axiom.
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Part A

(Ax)
KbKa(KmKaϕ ⊃ KmKbψ) 'sc KbKa(KmKaϕ ⊃ KmKbψ)

(T)
KbKa(KmKaϕ ⊃ KmKbψ) ' Ka(KmKaϕ ⊃ KmKbψ)

(Ax)
KmKaϕ 'sc KmKaϕ

(Ax)
KmKaϕ ⊃ KmKbψ 'sc KmKaϕ ⊃ KmKbψ

(⊃-E)
KmKaϕ,KmKaϕ ⊃ KmKbψ 'sc KmKbψ

(nec)
KaKmKaϕ,Ka(KmKaϕ ⊃ KmKbψ) 'sc KaKmKbψ

(⊃-I)
KaKmKaϕ 'sc Ka(KmKaϕ ⊃ KmKbψ) ⊃ KaKmKbψ

(⊃-E)
KbKa(KmKaϕ ⊃ KmKbψ),KaKmKaϕ 'sc KaKmKbψ

(⊃-I)
KbKa(KmKaϕ ⊃ KmKbψ) 'sc KaKmKaϕ ⊃ KaKmKbψ

(∨-I)
KbKa(KmKaϕ ⊃ KmKbψ) 'sc (KmKaϕ ⊃ KmKbψ)∨ (KmKbψ ⊃ KmKaϕ)

Part B

(SC)
'sc (KmKaϕ ⊃ KmKbψ)∨ (KmKbψ ⊃ KmKaϕ)

(nec)
'sc Ka ((KmKaϕ ⊃ KmKbψ)∨ (KmKbψ ⊃ KmKaϕ))

(K∨)
'sc Ka(KmKaϕ ⊃ KmKbψ)∨Ka(KmKbψ ⊃ KmKaϕ)

(nec)
'sc Kb (Ka(KmKaϕ ⊃ KmKbψ)∨Ka(KmKbψ ⊃ KmKaϕ))

(K∨)
'sc KbKa(KmKaϕ ⊃ KmKbψ)∨KbKa(KmKbψ ⊃ KmKaϕ)

.

.

. Part A
.
.
. (same as left, swap (a,b) and (ϕ,ψ))

(∨E)
'sc (KaKmKaϕ ⊃ KaKmKbψ)∨ (KbKmKbψ ⊃ KbKmKaϕ)

Part C
(Ax)

KaKmKaϕ ∧KbKmKbψ 'sc KaKmKaϕ ∧KbKmKbψ
(∧-E0)

KaKmKaϕ ∧KbKmKbψ 'sc KaKmKaϕ
(Ax)

KaKmKaϕ ⊃ KaKmKbψ 'sc KaKmKaϕ ⊃ KaKmKbψ
(⊃-E)

KaKmKaϕ ⊃ KaKmKbψ ,KaKmKaϕ ∧KbKmKbψ 'sc KaKmKbψ

(T)
KmKbψ 'sc Kbψ

(nec)
KaKmKbψ 'sc KaKbψ

(⊃-I)
'sc KaKmKbψ ⊃ KaKbψ

(⊃-E)
KaKmKaϕ ⊃ KaKmKaψ ,KaKmKaϕ ∧KbKmKbψ 'sc KaKbψ

Main Part

.

.

. Part B
(KaKmKaϕ ⊃ KaKmKbψ)∨ (KbKmKbψ ⊃ KbKmKaϕ)

.

.

. Part C
KmKaϕ ⊃ KmKbψ, KaKmKaϕ ∧KbKmKbψ 'sc KaKbψ

KmKaϕ ⊃ KmKbψ , KaKmKaϕ ∧KbKmKbψ 'sc KaKbψ ∨KbKaϕ
.
.
. (same as left, swap (a,b) and (ϕ,ψ))

∨E
KaKmKaϕ ∧KbKmKbψ 'sc KaKbψ ∨KbKaϕ

(⊃-I)
'sc (KaKmKaϕ ∧KbKmKbψ) ⊃ (KaKbψ ∨KbKaϕ)

Figure 2: A proof diagram for an example theorem (KaKmKaϕ ∧KbKmKbψ) ⊃ (KaKbψ ∨KbKaϕ) in
'sc.

Definition 4.1. Assume there is a vector of atomic formulas (Ip)p∈P. A waitfree protocol description ϕ
is a formula of the form

ϕ =
∧

a∈A
KaKmKa · · ·KaIa

where Kp and Km appear alternatively in “· · ·”. A waitfree task specification ψ is defined with the BNF:

ψ ::= Kpψ | ψ ∧ψ | ψ ∨ψ | Ip

where p stands for a process in P. A waitfree assertion is a formula ϕ ⊃ ψ where ϕ is a waitfree protocol
description and ψ is a waitfree task specification.

We are only interested in reasoning about a fixed protocol so that each process interacts with the
memory for only finite times. In addition to this restriction, there is no process–process communication
although there is process–memory communication so that a protocol can be described by a formula
containing only a single process p and m. Finally, we forcefully decide that we are only interested in
existence of knowledge at the end of protocols so that the requirement of a task can be represented in
a positive formula. The formula (KaKmKaϕ ∧KbKmKbψ) ⊃ (KaKbψ ∨KbKaϕ) proved in Figure 2 is a
waitfree assertion.

Definition 4.2. A partial schedule (σi)i∈I is a finite sequence of subsets of P.

9
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Figure 3: A model induced by the partial schedule {a,b},{a},{b}. A solid arrow pointing to (x,n)
shows an fx mapping. Dotted arrows show + relations. We omit inferable arrows and the valuation.

Definition 4.3. For a process p∈P and a partial schedule σ , countp(σ) is the cardinality |{i ∈ I | p ∈ σi}|.
For a waitfree protocol description ϕ =

∧
p∈P KpKm · · ·KpIp, countp(ϕ) is the number of Km occur-

rences in KpKm · · ·KpIp.
A partial schedule σ is compatible to a waitfree protocol description ϕ if countp(ϕ) = countp(σ) for

any process p ∈ P.

Definition 4.4. For a waitfree protocol description ϕ and a compatible partial schedule (σi)i∈I , we
define a waitfree schedule model R(ϕ ,σ) = 〈W,+,( fx)x∈A,ρ〉 as:

• W = {(p, i) ∈ P×N | p ∈ σi}∪{(p, i)′ ∈ P×N | p ∈ σi}∪{(m, i) | i ∈ I}∪{(o, i) | i ∈ I}∪{⊥}

• (a, i)+ (m, i+1)+ (a, i)′, (x, j)+ (o, i) if and only if j ≤ i, ⊥+w for all w∈W, and (x, j)′ + (o, i)
if and only if j ≤ i.

• fa(w) =






the least (a, j) with (a, j) + w (if there exists such (a, j))
(the definition of + assures there is the least such (a, j)),

⊥ (if such (a, j) does not exist).

• ρ(Ia) = {w ∈W | (a,0) + w}.

An example of a model induced by a partial schedule is shown in Figure 3.
Using the definitions above, we can state the logical characterization of waitfree communication.

Theorem 4.5 (Completeness for waitfree communication). Assume ϕ ⊃ ψ is a waitfree assertion. The
relation 'SC ϕ ⊃ ψ holds if the relation R(ϕ,σ),(o,n) |= ψ holds for any compatible partial schedule σ
where the state (o,n) is the last state of the waitfree model R(ϕ,σ).

To prove completeness, we only use special models called singleton models induced by a permutation
of processes.

Definition 4.6. For a set of processes P, we define S(P) to be the set of the permutations of P.

Definition 4.7. For π ∈ S(P) and 0 ≤ k ≤ |P|, we define SC(π,k) to be the set {KmKaIa ⊃ KmKbIb |
there existi, jwith j ≤ i ≤ k, πi = a, and π j = b}.

Lemma 4.8. 'sc
∨

π∈S(A) SC(π, |P|) holds.

10
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Proof. It suffices to use rule (SC) many times.

Definition 4.9. For a permutation π of P and a waitfree protocol description ϕ , we define a partial
schedule σ(ϕ ,π) as

σ(ϕ,π) =
countπ0 (ϕ)
︷ ︸︸ ︷
π0, · · · ,π0,

countπ1 (ϕ)
︷ ︸︸ ︷
π1, · · · ,π1, · · · · · · · · · ,

countπn (ϕ)︷ ︸︸ ︷
πn, · · · ,πn .

Definition 4.10. A singleton model is a model of the form R(ϕ,σ(ϕ ,π)). We abbreviate this to R(ϕ ,π).
For a singleton model and an index k ∈ I, wk denotes the minimum external observer state above all

π j states for j < k.

Definition 4.11. For a waitfree protocol description ϕ =
∧

a∈A

na︷ ︸︸ ︷
KaKmKa · · ·Ka Ia, we define the restriction

ϕ !p,k=
∧

a∈A!p,k

na︷ ︸︸ ︷
KaKmKa · · ·Ka Ia where A !p,k= {a | p j = a for some j < k}.

Lemma 4.12. R(ϕ ,π),(o,k) |= ψ =⇒ SC(π,k) ' ϕ !π,k⊃ ψ .

Proof of Lemma 4.12. By induction on k.

(Case k = 0) We show a stronger proposition: (o,0) |= ψ implies fp0(o,0) |= ψ, ' ϕ !p,0⊃ ψ and
' ϕ !p,0⊃ Kaψ by inner induction on ψ .

(When ψ is an atomic formula P) P = Iπ0 holds. Since ϕ !π,0= Kπ0KmKπ0 · · ·KmKπ0Iπ0 , 'ϕ !π,0⊃
Kπ0P holds. So, SC(π,0) ' ϕ !π,0⊃ Kπ0P holds. Consequently, SC(π,0) ' ϕ !π,0⊃ P also
holds.

(When ψ = ψ0 ∧ψ1 or ψ0 ∨ψ1) Induction goes smoothly.
(When ψ = Kaψ ′) Assume (o,0) |= Kaψ ′. Claim: a = π0 holds. Seeking contradiction, assume

a /= π0. That means fa((o,0)) = ⊥. However, waitfree task specification is satisfied at the
state ⊥. Contradiction. We have proved a = π0. Using this, we can show that fa((o,0)) |= ψ ′

holds. By idempotency of fa, fa( fa((o,0))) |= ψ ′ holds. This means fa((o,0)) |= Kaψ ′.
Since (o,0) |= ψ ′, by inner induction hypothesis, ' ϕ !π,0⊃ Kaψ ′

a. By proof theoretic con-
sideration, ' ϕ !π,0⊃ KaKaψ ′ holds.

(Case k = k′ +1) Like the base case, we show a stronger proposition (o,k) |= ψ ⇔ fπk((o,k)) |= ψ ⇒
SC(π,k) ' ϕ !π,k⊃ ψ and SC(π,k) ' ϕ !π,k⊃ Kπk ψ, using inner induction on ψ .

(When ψ = P, an atomic formula) Either R(ϕ,π),wk′ |= P or Iπk = P holds. In the former case,
by induction hypothesis. In the latter case, similarly as the base case.

(When ψ = ψ0 ∧ψ1 or ψ0 ∨ψ1) Induction goes smoothly.
(When ψ = Kxψ ′) If πk /= x, fπk((o,k)) |= Kxψ ′ implies (o,k′) |= Kxψ ′. By outer induction hy-

pothesis, SC(π,k′) ' ϕ !π,k′⊃ Kxψ ′ and SC(π,k′) ' ϕ !π,k′' ϕ !π,k′⊃ Kxψ ′ hold. Here, we
can safely replace k′ with k. If πk = x, (o,k) |= Kxψ ′ imply (o,k) |= ψ ′. By inner induction
hypothesis, we obtain SC(π,k)'ϕ !π,k⊃Kxψ ′. This also implies SC(π,k)'ϕ !π,k⊃KxKxψ ′.

After showing this generalized lemma, proving Theorem 4.5 is easy.

Proof of Theorem 4.5. Since R(ϕ, p),w|P| |= ψ , SC(p, |P|) ' ϕ ⊃ ψ . By Lemma 4.8, 'sc ϕ ⊃ ψ .

Any models induced by a schedule is finite. For a waitfree assertion ϕ , it is decidable whether 'sc ϕ
holds or not.

11
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4.1 Decidability of Solvability of Waitfree Task Specification

Definition 4.13. A waitfree task specification ψ is solvable if there is such a waitfree protocol description
ϕ that the relation R(ϕ ,σ),(o,n) |= ψ holds for any compatible partial schedule σ where the state (o,n)
is the last state of the model R(ϕ,σ).

Fact. The set of solvable waitfree task specifications are recursively enumerable because the relation 'sc
is axiomatized.
Fact. The set of unsolvable waitfree task specifications are recursively enumerable because schedule-
induced models are recursively enumerable.

These two facts imply that it is decidable whether a waitfree task specification is solvable or not. This
does not contradict the undecidability of waitfreely solvable tasks by Gafni and Koutsoupias [9] because
the undecidability proof utilizes tasks that cannot be expressed by waitfree task specifications. They use
tasks involving consensus: the tasks involving making agreements among processes, where whether an
output value is allowed or not depends on other processes’ output values. Waitfree tasks specifications
cannot describe such tasks.

5 Related Work

Ondrej Majer’s Epistemic Logic with Relevant Agents [20] is similar to K∨ in that both logics have
epistemic modalities and that both logics are not classical. However, the logic given in [20] contains
only one modality K for knowledge. This implicitly assumes that there is a single agent, not multiple
agents so that it is impossible for their logic to treat communication between multiple agents.

Many logics have both temporal and epistemic modalities. Ewald [7] proposes an intuitionistic logic
with temporal modality. In Kobayashi and Yonezawa’s logic [15], processes appear in formulas but time
does not appear in formulas because time is implicit in the system of logic programming. This logic is
different from K∨ in that this logic is based on linear logic and that their usage is logic programming.

6 Discussions

Waitfree Computation The Gödel Prize in 2004 was given to Herlihy and Shavit [12] and Saks and
Zaharoglou [25]. This work was motivated by these works. Herlihy and Shavit [12] used subdivision
of colored simplicial complex to model waitfree computation. Each vertex is colored by an agent. Each
simplex contains vertices with distinct colors. A vertex may have an ancestor simplex called carrier.
The minimum subset of (S∪V )× (S∪V ) containing the ancestor relation and the relation ∈ forms an
order ". We can define a partial fa : S → S where S is the set of simplex in a simplicial complex by
letting fa(s) = {x} where x is the maximum vertex below s (w.r.t. ") whose color is a. When we add
a bottom simplex ⊥ and make fa total, we can regard a simplicial complex as a model of K∨ as in an
example (Figure 4).

Saks and Zaharoglou [25] use full-information protocols [30]. Even the shared variables remember
the whole history. In every component, knowledge increases monotonically through time. This mono-
tonicity suggests that their model can be analyzed effectively in Kripke models for intuitionistic logic.
Saks and Zaharoglou [25] also suggest that “it will be worthwhile to explore the connection with the
formal theory of distributed knowledge.” This work is following their suggestion by treating waitfree
communication in a formal way, especially using a logic with epistemic modalities.

Sequential Consistency or Linearizability Attiya and Welch [2] pointed out that sequential consis-
tency [17] and linearizability [13] are often confused. We briefly make sure that the deduction system
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Figure 4: How subdivision of simplicial complexes is transformed into K∨model. Left: A simplex
s0 = {va,vb} is subdivided into s1 = {va,wb},s2 = {wa,wb} and s3 = {wa,vb}. Right: K∨ frame obtained
from the left subdivision.

'SC does not characterize linearizability. Herlihy [13] stated that linearizability is a local property; in
other words, when each memory object satisfies linearizability, the combined system also has lineariz-
ability. However, the axiom type SC is not local. To see that, assume there are two memory objects m
and m′. The axiom type SC for m is (Kmϕ ⊃ Kmψ)∨ (Kmψ ⊃ Kmϕ). The axiom type SC for m′ is
(Km′ϕ ⊃ Km′ψ)∨ (Km′ψ ⊃ Km′ϕ). Even when both of these axiom types are available, the mixed axiom
type (Km′ϕ ⊃ Km′ψ)∨ (Km′ψ ⊃ Km′ϕ) is not derivable. This shows the characterized property is not
local.

Other Consistency Models Steinke and Nutt [26] gave a lattice of consistency properties including:
sequential consistency, causal consistency, processor consistency, PRAM consistency, cache consistency,
slow consistency and local consistency. It is our future work modeling other consistency properties than
sequential consistency.

Latency versus Throughput Our logic is more suitable for a situation where latency is more impor-
tant than throughput. Since we consider time as the partial order of intuitionistic Kripke models, all
knowledge must be preserved during time progress. Communication must be done in full-information
manner (as in full-information protocols in [30]) because messages define the partial order. Our logic is
advantageous when latency is important so that it is important to know how many message interactions
are needed to accomplish a certain task. We plan to investigate network protocols with K∨ .

Disjunction Distribution Over K Modality Since the semantics for modalities is defined by functions
on Kripke frames, the disjunction distributes modalities in K∨. Kojima and Igarashi [16] avoids the
distribution of modalities over disjunction by giving up functional modality. On the other hand, K∨ has
distribution. We speculate that the difference comes from the different interpretations of modalities
according to time: in [16], inner subformulas within the scope of the modality are interpreted in the
future; while in K∨ , inner subformulas within the scope of the modalities are interpreted in the past.

By translation of Suzuki [27], when A is a singleton set, K∨ corresponds to the intuitionistic predicate
logic with singleton domain in the same manner the models of the logic L3 of Ono [21] correspond to
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the models of intuitionistic predicate logic with constant domain. This fact suggests that the semantics
of K∨ is very simple when there is only one agent. Simplicity was our aim at the beginning.
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