

Yoichi Hirai (Ethereum Foundation)
Nov. 2, 2017, Cancun

Morphing Smart Contracts with Bamboo

@pirapira

Ethereum is a Heavenly
Programming Environment
● Cosmic rays
● Malicious admins
● Wrong EVM implementations
● Cats

Bug-free Programming Pays in
Ethereum
● Let’s aim there.
● Let’s match what happens and how a program looks.

One Mental Model of Ethereum
Contracts

● (Haskellers or category theorists?)

Something happens

input output

Something calls
the Ethereum contract

The Ethereum contract
waits until it’s called again.

Contract state
before the call

Contract state
after the call

The first Bamboo program

Contract C

Contract A

Contract A

Contract B

f

0

f

1

f

2

f

contract A()
{
 case (uint256 f()) {
 return 0 then become B();
 }
}
contract B()
{
 case (uint256 f()) {
 return 1 then become C();
 }
}
contract C()
{
 case (uint256 f()) {
 return 2 then become A();
 }
}

0

Look, Ma, no State Variables

Contract A(2)

Contract A(0)

Contract A(3)

Contract A(1)

f

0

f

1

f

2

f

contract A(uint256 counter)
{
 case (uint256 f()) {
 return counter then become A(counter + 1);
 }
}

3

It‘s kind of similar to Erlang.

But I am trying to trap Solidity
users with sugarly syntax.

Code from Learn You Some Erlang for
 Great Good
.

fridge1() ->
 receive
 {From, {store, _Food}} ->
 From ! {self(), ok},
 fridge1();
 {From, {take, _Food}} ->
 %% uh....
 From ! {self(), not_found},
 fridge1();
 terminate ->
 ok
 end.

http://learnyousomeerlang.com/more-on-multiprocessing
http://learnyousomeerlang.com/more-on-multiprocessing

Ethereum contracts are games,
like a vault

Usual UnVaulting
(amount, time, destination)

Destroyed

unvault() with vault key

redeem(): payout

recover() with recover key

destroy() with
 recover key destroy() with

recover key

For online readers:
* Bitcoin Covenants http://fc16.ifca.ai/bitcoin/papers/MES16.pdf
* Emin Gün Sirer’s blog post
http://hackingdistributed.com/2016/02/26/how-to-implement-secure
-bitcoin-vaults/
* Nick Johnson’s implementation
https://www.reddit.com/r/ethereum/comments/4wy6t9/ether_vault
_store_your_ether_timelocked_for_easy/
* Dennis Peterson’s http://www.blunderingcode.com/ether-vaults/

http://fc16.ifca.ai/bitcoin/papers/MES16.pdf
http://hackingdistributed.com/2016/02/26/how-to-implement-secure-bitcoin-vaults/
http://hackingdistributed.com/2016/02/26/how-to-implement-secure-bitcoin-vaults/
https://www.reddit.com/r/ethereum/comments/4wy6t9/ether_vault_store_your_ether_timelocked_for_easy/
https://www.reddit.com/r/ethereum/comments/4wy6t9/ether_vault_store_your_ether_timelocked_for_easy/
http://www.blunderingcode.com/ether-vaults/

How to check vault.sol
Solidity code taken from http://www.blunderingcode.com/ether-vaults/
contract Vault {
 uint public unvaultedAmount;
 bool public destroyed;
 <snip>
 function Vault(<snip>) {}
 function () not_destroyed {}
 function unvault(uint _amount) only_vaultkey not_destroyed {
 <snip>
 }
 function redeem() only_vaultkey not_destroyed {
 <snip>
 }
 function recover(address _newHotwallet) only_recoverykey
not_destroyed {
 <snip>
 }
 function destroy() only_recoverykey not_destroyed {
 destroyed = true;
 }
}

How to check vault.sol
– identify states

True means Destroyed
Non-zero means UnVaulting.

contract Vault {
 uint public unvaultedAmount;
 bool public destroyed;
 <snip>
 function Vault(<snip>) {}
 function () not_destroyed {}
 function unvault(uint _amount) only_vaultkey not_destroyed {
 <snip>
 }
 function redeem() only_vaultkey not_destroyed {
 <snip>
 }
 function recover(address _newHotwallet) only_recoverykey
not_destroyed {
 <snip>
 }
 function destroy() only_recoverykey not_destroyed {
 destroyed = true;
 }
}

How to check vault.sol—Check the
Constructor

…. results in Usual state.

contract Vault {
 uint public unvaultedAmount;
 bool public destroyed;
 <snip>
 function Vault(<snip>) {}
 function () not_destroyed {}
 function unvault(uint _amount) only_vaultkey not_destroyed {
 <snip>
 }
 function redeem() only_vaultkey not_destroyed {
 <snip>
 }
 function recover(address _newHotwallet) only_recoverykey
not_destroyed {
 <snip>
 }
 function destroy() only_recoverykey not_destroyed {
 destroyed = true;
 }
}

contract Vault {
 uint public unvaultedAmount;
 bool public destroyed;
 <snip>
 function Vault(<snip>) {}
 function () not_destroyed {}
 function unvault(uint _amount) only_vaultkey not_destroyed {
 <snip>
 }
 function redeem() only_vaultkey not_destroyed {
 <snip>
 }
 function recover(address _newHotwallet) only_recoverykey
not_destroyed {
 <snip>
 }
 function destroy() only_recoverykey not_destroyed {
 destroyed = true;
 }
}

How to check vault.sol--
Check Transitions from Usual

From Usual From
UnVaulting

From
Destroyed

Usual

Usual(?) or
UnVaulting

Usual(?)

Usual

Destroyed

contract Vault {
 uint public unvaultedAmount;
 bool public destroyed;
 <snip>
 function Vault(<snip>) {}
 function () not_destroyed {}
 function unvault(uint _amount) only_vaultkey not_destroyed {
 <snip>
 }
 function redeem() only_vaultkey not_destroyed {
 <snip>
 }
 function recover(address _newHotwallet) only_recoverykey
not_destroyed {
 <snip>
 }
 function destroy() only_recoverykey not_destroyed {
 destroyed = true;
 }
}

How to check vault.sol--
Check Transitions from UnVaulting

From Usual From
UnVaulting

From
Destroyed

Usual UnVaulting

Usual(?) or
UnVaulting

UnVaulting(?)

Usual(?) Usual

Usual Usual

Destroyed Destroyed

contract Vault {
 uint public unvaultedAmount;
 bool public destroyed;
 <snip>
 function Vault(<snip>) {}
 function () not_destroyed {}
 function unvault(uint _amount) only_vaultkey not_destroyed {
 <snip>
 }
 function redeem() only_vaultkey not_destroyed {
 <snip>
 }
 function recover(address _newHotwallet) only_recoverykey
not_destroyed {
 <snip>
 }
 function destroy() only_recoverykey not_destroyed {
 destroyed = true;
 }
}

How to check vault.sol--
Check Transitions from Destroyed

From Usual From
UnVaulting

From
Destroyed

Usual UnVaulting Abort

Usual(?) or
UnVaulting

UnVaulting(?) Abort

Usual(?) Usual Abort

Usual Usual Abort

Destroyed Destroyed Abort

● You had to read the program three times!
● Reviewing a program takes at least #states × #lines

How to check vault.bbo

Usual UnVaulting

Destroyed

unvault()

redeem()

recover()

destroy()
destroy()

contract Vault(address vaultKey, address recoveryKey) {
 case(void unvault(uint256 _amount, address _hotWallet)) {
 <snip> return then become UnVaulting(<snip>);
 }
 case(void destroy()) {
 <snip> return then become Destroyed();
 }
}
contract UnVaulting(uint256 redeemtime, uint256 amount,
address hotWallet, address vaultKey, address recoveryKey) {
 case(void redeem()) {
 <snip> return then become Vault(vaultKey, recoveryKey);
 }
 case(void recover()) {
 <snip> return then become Vault(vaultKey, recoveryKey);
 }
 case(void destroy()) {
 <snip> return then become Destroyed();
 }
}
contract Destroyed() {
 // any call just throws;
}

More Language Features

Reentrancy Guard

Creating a Contract

Arrays contract Token
(address => uint256 balances)
{
 case(bool transfer(address _to, uint256 _amount))
 {
 <snip: various checks>
 balances[_to] = balances[_to] + _amount;
 return true then become Token(balances);
 }
 <snip>
}

void = hotWallet.default() with amount reentrance { abort; };

bid new_bid =
 deploy bid(sender(msg), value(msg), this) with value(msg)
 reentrance { abort; }; // failure throws.

What‘s missing & Priorities

● No functions
● No loops
● “Avoid success at all costs”

● Language Specification
● An independent interpreter

● Nicer error message.
● Integrate with truffle, embark etc.

● Detect unused local variable.
● Detect too much stack usage.
● Detect aliasing of mappings.

● Calling externally defined contracts.

How you can help

Can OCaml Have a look at
https://github.com/pirapira/bamboo
and tell me what you think

Know Linden Scripting Language or Erlang Tell me your favorite features in these
langs.

Can LaTeX spec.tex!

Can draw Logo!

The compiler probably has bugs. Lots of eyes needed.

https://github.com/pirapira/bamboo

